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A long time ago In a paper, before
the rise of Deep Learning....



A Short History of
Boltzmann Machines
(1985-2009)
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General Boltzmann Machines(1984-86)
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The computational power of massively parallel networks of simple processing
elements resides in the communication bandwidth provided by the hardware
connections between elements. These connections can allow a significant
fraction of the knowledge of the system to be applied to an instance of a prob-
lem in o very short time. One kind of computation for which massively parallel
networks appear to be well suited is large constraint satisfaction searches,
but to use the connections efficiently two conditions must be met: First, a
search technique that is suitable for parallel networks must be found. Second,
there must be some way of choosing internal representations which allow the
preexisting hardware connections to be used efficiently for encoding the con-
straints in the domain being searched. We describe a general parallel search
method, based on statistical mechanics, and we show how it leads to a gen-

CHAPTER 7

Learning and Relearning in Boltzmann Machines

G. E. HINTON and T. J. SEJINOWSKI

Many of the chapters in this volume make use of the ability of a paral-
lel network to perform cooperative searches for good solutions to prob-
lems. The basic idea is simple: The weights on the connections
between processing units encode knowledge about how things normally
fit together in some domain and the initial states or external inputs to a
subset of the units encode some fragments of a structure within the
domain. These fragments constitute a problem: What is the whole
structure from which they probably came? The network computes a
"good solution" to the problem by repeatedly updating the states of
units that represent possible other parts of the structure until the net-
work eventually settles into a stable state of activity that represents the
solution.

One field in which this style of computation seems particularly
appropriate is vision. (Ballard, Hinton, & Sejnowski, 1983). A visual
system must be able to solve large constraint-satisfaction problems
rapidly in order to interpret a two-dimensional intensity image in terms
of the depths and orientations of the three-dimensional surfaces in the
world that gave rise to that image. In general, the information tn the
image is not sufficient to specify the three-dimensional surfaces unless
the interpretive process makes use of additional plausible constraints
about the kinds of structures that typically appear. Neighboring pieces
of an image, for example, usually depict fragments of surface that have
similar depths, similar surface orientations, and the same reflectance.
The most plausible interpretation of an image is the one that satisfies
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Hummel and Zucker (1983) and Hopfield (1982) have shown that
some relaxation Schemes have an associated "potential" or cost function
and that the states to which the network converges are local minima of
this function. This means that the networks are performing optimiza-
tion of a well-defined function. Unfortunately, there is no guarantee
that the network will find the best minimum. One possibility is to
redefine the problem as finding the local minimum which is closest to
the initial state. This is useful if the minima are used to represent
"items” in a memory, and the initial states are queries to0 memory
which may contain missing or erroneous information. The network
simply finds the minimum that best fits the query. This idea was used
by Hopfield (1982) who introduced an interesting kind of network in
which the units were always in one of two states.! Hopfield showed that
if the units are symmetrically connected (i.e., the weight from unit i to
unit j exactly equals the weight from unit j to unit /) and if they are
updated one at a time, each update reduces (or at worst does not
increase) the value of a cost function which he called "energy" because
of the analogy with physical systems. Consequently, repeated iterations
are guaranteed to find an energy minimum. The global energy of the
system is defined as

E = _2 WI/SIS/ + 29,‘5,* (1)

i<y

where w;; is the strength of connection (synaptic weight) from the jth
to the /th unit, s; is the state of the ith unit (0 or 1), and 9, is a
threshold.

The updating rule is to switch each unit into whichever of its two
states yields the lower total energy given the current states of the other
units. Because the connections are symmetrical, the difference between
the energy of the whole system with the kth hypothesis false and its
energy with the kth hypothesis true can be determined locally by the

kth unit, and is just

AEk = ZWkI-S,- - Ok' (2)

Therefore, the rule for minimizing the energy contributed by a unit is
to adopt the true state if its total input from the other units exceeds its
threshold. This is the familiar rule for binary threshold units.

I Hopfield used the states 1 and —1 because his model was derived from physical sys-
tems called spin glasses in which spins are either "up" or "down." Provided the units
have thresholds, models that use 1 and —1 can be translated into models that use 1 and 0
and have different thresholds.
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Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Atrtificial Intelligence and Statistics (pp. 693-700).



Restricted Boltzmann Machines(1986)

CHAPTER 6

Information Processing in Dynamical Systems:
Foundations of Harmony Theory

P. SMOLENSKY

INTRODUCTION
The Theory of Information Processing

At this early stage in the development of cognitive science, methodo-
logical issues are both open and central. There may have been times
when developments in neuroscience, artificial intelligence, or cognitive
psychology seduced researchers into believing that their discipline was
on the verge of discovering the secret of intelligence. But a humbling
history of hopes disappointed has produced the realization that under-
standing the mind will challenge the power of all these methodologies
combined.

The work reported in this chapter rests on the conviction that a
methodology that has a crucial role to play in the development of cog-
nitive science is mathematical analysis. The success of cognitive sci-
ence, like that of many other sciences, will, I believe, depend upon the
construction of a solid body of theoretical results: results that express in
a mathematical language the conceptual insights of the field; results
that squeeze all possible implications out of those insights by exploiting
powerful mathematical techniques.

This body of results, which I will call the theory of information process-
ing, exists because information is a concept that lends itself to
mathematical formalization. One part of the theory of information pro-
cessing is already well-developed. The classical theory of computation
provides powerful and elegant results about the notion of effective
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FIGURE 4. Each knowledge atom is a vector of +, —, and 0 values of the representa-
tional feature nodes.

line-segment units, which are like those in the original letter-perception
model.

This simple mode! illustrates several points about the nature of
knowledge atoms in harmony theory. The digraph unit W4,
represents a pattern of values over the letter units: W, and 4, on, with
all other letter units for positions 1 and 2 off. This pattern is shown in
Figure 4, using the labels +, —, and 0 to denote on, off, and irrelevant.
These indicate whether there is an excitatory connection, inhibitory
connection, or no connection between the corresponding nodes.’

Figure 4 shows the basic structure of harmony models. There are
atoms of knowledge, represented by nodes in an upper layer, and a
lower layer of nodes that comprises a representation of the state of the
perceptual or problem domain with which the system deals. Each node
is a feature in the representation of the domain. We can now view
"atoms of knowledge" like W, and 4, in several ways. Mathematically,
each atom is simply a vector of +, —, and 0 values, one for each node
in the lower, representation layer. This pattern can also be viewed as a
Jragment of a percept: The 0 values mark those features omitted in the
fragment. This fragment can in turn be interpreted as a trace left
behind in memory by perceptual experience.

7 Omitted are the knowledge atoms that relate the letter nodes to the line segment
nodes. Both line segment and letter nodes are in the lower layer, and all knowledge
atoms are in the upper layer. Hierarchies in harmony theory are imbedded within an
architecture of only two layers of nodes, as will be discussed in Section 2.
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Point 5. Knowledge atoms are fragments of representations that accu-
mulate with experience.

THE COMPLETION TASK

Having specified more precisely what the atoms of knowledge are, it
is time to specify the task in which they are used.

Many cognitive tasks can be viewed as inference tasks. In problem
solving, the role of inference is obvious; in perception and language
comprehension, inference is less obvious but just as central. In har-
mony theory, a tightly prescribed but extremely general inferential task
is studied: the completion task. In a problem-solving completion task, a
partial description of a situation is given (for example, the initial state
of a system); the problem is to complete the description to fill in the
missing information (the final state, say). In a story understanding
completion task, a partial description of some events and actors’ goals is
given; comprehension involves filling in the missing events and goals.
In perception, the stimulus gives values for certain low-level features of
the environmental state, and the perceptual system must fill in values
for other features. In general, in the completion task some features of
an environmental state are given as input, and the cognitive system
must complete that input by assigning likely values to unspecified
features.

A simple example of a completion task (Lindsay & Norman, 1972) is
shown in Figure 5. The task is to fill in the features of the obscured
portions of the stimulus and to decide what letters are present. This
task can be performed by the model shown in Figure 3, as follows.
The stimulus assigns values of on and off to the unobscured letter
features. What happens is summarized in Table 1.

Note that which atoms are activated affects how the representation is

FIGURE 5. A perceptual completion task.
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ARTICLE Communicated by Javier Movellan

Training Products of Experts by Minimizing
Contrastive Divergence

Geoffrey E. Hinton

hinton@cs.toronto.edu

Gatsby Computational Neuroscience Unit, University College London, London
WCIN 3AR, U.K.

Itis possible to combine multiple latent-variable models of the same data
by multiplying their probability distributions together and then renor-
malizing. This way of combining individual “expert” models makes it
hard to generate samples from the combined model but easy to infer the
values of the latent variables of each expert, because the combination rule
ensures that the latent variables of different experts are conditionally in-
dependent when given the data. A product of experts (PoE) is therefore
an interesting candidate for a perceptual system in which rapid inference
is vital and generation is unnecessary. Training a PoE by maximizing the
likelihood of the data is difficult because it is hard even to approximate
the derivatives of the renormalization term in the combination rule. For-
tunately, a PoE can be trained using a different objective function called
“contrastive divergence” whose derivatives with regard to the parameters
can be approximated accurately and efficiently. Examples are presented of
contrastive divergence learning using several types of expert on several
types of data.

1 Introduction

One way of modeling a complicated, high-dimensional data distribution is
touse alarge number of relatively simple probabilistic models and somehow
combine the distributions specified by each model. A well-known example
of this approach is a mixture of gaussians in which each simple model is
a gaussian, and the combination rule consists of taking a weighted arith-
metic mean of the individual distributions. This is equivalent to assuming
an overall generative model in which each data vector is generated by first
choosing one of the individual generative models and then allowing that
individual model to generate the data vector. Combining models by form-
ing a mixture is attractive for several reasons. It is easy to fit mixtures of
tractable models to data using expectation-maximization (EM) or gradient
ascent, and mixtures are usually considerably more powerful than their in-
dividual components. Indeed, if sufficiently many models are included in

Neural Computation 14,1771-1800 (2002) (© 2002 Massachusetts Institute of Technology

7 PoEs and Boltzmann Machines

he Boltzmann machine learning aleorithm (Hinton & Seinowski, 1986) is
theoretically elegant and easy to implement in hardware but very slow in
networks with interconnected hidden units because of the variance prob-
lems descri In section 2. Smolensky (1986) introduced a restricted type
of Boltzmann machine with one visible layer, one hidden layer, and no
intralayer connections. Freund and Haussler (1992) realized that in this re-
stricted Boltzmann machine (RBM), the probability of generating a visible
vector is proportional to the product of the probabilities that the visible vec-
tor would be generated by each of the hidden units acting alone. An RBM

is therefore a PoE with one expert per hidden unit.” When the hidden unit

’ Boltzmann machines and PoEs are very different classes of pmbabilistic generative
model, and the intersection of the two classes is RBMs.

1774 | Geoffrey E. Hinton
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Figure 1: A visualization of alternating Gibbs sampling. At time 0, the visible
variables represent a data vector, and the hidden variables of all the experts
are updated in parallel with samples from their posterior distribution given the
visible variables. At time 1, the visible variables are all updated to produce a re-
construction of the original data vector from the hidden variables, and then the
hidden variables are again updated in parallel. If this process is repeated suffi-
ciently often, it is possible to get arbitrarily close to the equilibrium distribution.
The correlations (s;s;) shown on the connections between visible and hidden
variables are the statistics used for learning in RBMs, which are described in
section 7.
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Deep Belief Networks(2006)

A fast learning algorithm for deep belief nets *

Geoffrey E. Hinton and Simon Osindero

Department of Computer Science University of Toronto

100 Kings College Road
Toronto, Canada M5S 3G4
{hinton, osindcro } @cs toronto .c(

Abstract

We show how to use “complementary priors” to
eliminate the explamming away effects that make
inference difficult in densely-connected belief
nets that have many hidden layers. Using com-
riors, we derive a fast, greedy algo-
rithm that can learn I 1ef networks

one_layer al a lime. provided the wp two lay-
ers form an undirected associative memory. The
ast, greedy algorithm i1s used to imitialize a slower
learning procedure that fine-tunes the weights us-
ing a contrastive version of the wake-sleep algo-
rithm. After fine-tuning, a network with three
hidden layers forms a very good generative modcl
of the joint distribution of handwritten digit im-
ages and their labels. This generative model gives
better digit classification than the best discrimi-
native learning algorithms. The low-dimensional
manifolds on which the digits lie are modelled by
long ravines in the free-energy landscape of the
top-level associative memory and it 1s easy to ex-
plore these ravines by using the directed connec-
tions to display what the associative memory has
in mind.

Tratrandiiotian

Yee-Whye Teh
Department of Computer Science
National University of Singapore

3 Science Drive 3, Singapore, 117543
tchyw @comp.nus cdu.sg

remaining hidden layers form a directed acyclic graph that
converts the representations 1n the associative memory into
observable variables such as the pixels of an image. This hy-
brid model has some attractive features:

1.

(B
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h
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There 1s a fast, greedy learning algorithm that can find
a fairly good set of parameters quickly, even in deep
nctworks with millions of paramctcrs and many hidden
layers.

. The leamning algorithm is unsupervised but can be ap-

plied to labeled data by learning a model that generates
hoth the label and the data.

. There 1s a finc-tuning algorithm that lcarns an cxcel-

lent generative model which outperforms discrimina-
tive methods on the MNIST database of hand-written
digils.

. The gencrative model makes i1t casy to interpret the dis-

tributed representations in the deep hidden layers.

. The mflerence required [or [orming a percepl is both [ast

and accurate.

. The learning algorithm is local: adjustments to a

synapsc strcngth depend only on the statcs of the pre-
synaptic and posl-synaplic neuron.

. The communication i1s simple: neurons only need to

communicate their stochastic binary states.

LETTER

Communicated by Terrence Sejnowski

Representational Power of Restricted Boltzmann Machines
and Deep Belief Networks

Nicolas Le Roux
lerouxni@iro.umontreal .ca
Yoshua Bengio
bengioy@iro.umontreal.ca
Département Informatique et Recherche Opérationnelle, Université de Montréal,
Montréal, Québec, H3C 3]7, Canada

Deep belief networks (DBN) are generative neural network models
with many layers of hidden explanatory factors, recently introduced by
Hinton, Osindero, and Teh (2006) along with a greedy layer-wise unsuper-
vised learning algorithm. The building block of a DBN is a probabilistic
model called a restricted Boltzmann machine (RBM), used to represent
one layer of the model. Restricted Boltzmann machines are interesting

QW. .
pecause inference 1s easy in them and because they have been success-

fully used as building blocks for training deeper models. We first prove
that adding hidden units yields strictly improved modeling power, while
a second theorem shows that RBMs are universal approximators of dis-
crete distributions. We then study the question of whether DBNs with
more layers are strictly more powerful in terms of representational power.
This suggests a new and less greedy criterion for training RBMs within
DBNs.

1 Introduction

| .earning algorithms that learn to represent functions with many levels of
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Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science
University of Toronto
rsalakhu@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a vanational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains.  The use of (wo
quite different techniques for esimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
ollzmann machmes wil

ers ; and nnlllons of parameters. ' lhe learnmg can

be mddc more t.(hucnl by using a laver-by-laver
mwmwmm

“pre-training™ phase that allows variational in-
[erence to be mitiahized with a sing]c bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

Geoffrey Hinton
Department of Computer Science
University of Toronto
hinton@cs.toronto.edu

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdmmov, 2006). However, if multuple layers
are learned in this greedy. layer-by-layer way, the resulting
composite model 18 nor a multilayer Boltzmann machime
(Hinton et al., 2000). It 1s a hybrid generative model called
a “'deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all 1ts lower layers.

In this paper we present a much more elficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it 1s possible to use a stack of shightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine belore applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v € {0,1}”, and a set of hidden units h ¢ {0,1}* (see
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A Summary of the History

General BMs was proposed as a type of cognitive models!
RBMs became popular because of efficient training algorithm.
Deep architecture arose to create more powerful BMs by stacking RBMs.

DBMs are still one of the hardest types of neural networks to train today.



A Summary of the History

Gen ' '

RBM | .
|  Are there tractable learning algorithms for  §

Deed architectures that are stacks of RBMs? ing RBMs.

f

DBM pin today.



The Challenge




General Boltzmann Machines




Inference for Learning
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Inference for Learning
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The Challenges of Inference

The partition function is intractable.
Unconstrained dependency structure.
Gradient of discrete variables is not defined.

Boltzmann machines can be highly multimodal.



The Challenges of Inference

‘. 3 - P . LT > . . Lo . < > - - - - - . , " B - P > - . - -
T Sy e o - RA Qe o a0 SR o Ty i e Sl £ o & YW, VE ., o S O g et S LY DIB T, VE: TN A S o o R I o o ST 2o 2TePE A

-
€0

[l
. 0}

v P 4
] N
o
~
D » Q
" 3
A P
. e
- .
o)
i p

t
,‘ ‘8 [ ,
of K
) o .

o
b
'

v 4 i
"

d ,
-
A
) 3
d

.
4
15 n
s I
" v v
Y Q. \

. s q
, .
) B
’
3 id \

v 3
¢ S
d N.
" \
N U
R
. . . _ . _ s e N —
PO i kL Lk, T L o T T o RE ST W i k. o -k -q- - By 3 g - - kY L .. T (R - A R R T - g S o Sy e i
A s == o K © <4 ~ 07, e LN > 2 4 < i v v ~ i n R % £ i . eSS R ey T =
- P _ - - Ve 4 - P y P, . SN - _ P . - - . -~ hy " e N - oy N g . - ° - c - O g - - N . = - -




Probabilistic Continuous
Relaxation




The Motivation

 Challenge 2 and 3

* Relaxing discrete variables to continuous ones in optimization



The Question

How to relax discrete random variables and
preserve the distribution at the same time?



Probabilistic Relaxation

Carefully add relaxed variables to the discrete variables,
SO we can recover the discrete variables exactly.



Probabilistic Relaxation

Carefully add relaxed variables to the discrete variables,
SO we can recover the discrete variables exactly.

Discrete distribution Add auxiliary variables Marginalize

(s) * 5 p(s) Notice magic here.
a * p(x) This is “Gaussian

integral trick.”

X

s; € {0,1) p(xs) z; € R

z; € R
t p(s|x) I



Probabilistic Relaxation for Boltzmann Machines

1 1
p(s) = ~ X {aTs | 2STVVS}

Binary variables are Independent given relaxation

Each configuration defines the mean of correlated Gaussian

p(x) = Z7120(W + D)~/ exp {—%XT(W + D)_lx} H (1 + exp {ai + x; d; })

1



An Interpretation of the Relaxation of Boltzmann
machines

p(x) = Z7Y210(W + D)|~/2 exp {_%XT(W + D)lx} H (1 + exp {ai + d; })



An Interpretation of the Relaxation of Boltzmann
machines

p(x) = Z '12n(W + D)|~ /3

Gaussian
density function

Log Concave



An Interpretation of the Relaxation of Boltzmann
machines

p(x) = Z H2rn(W + D)| /2

Gaussian Normalization of logistic
density function parameterised Bernoulli

Log Concave Log Convex



Hamiltonian Monte Carlo




Hamiltonian Monte Carlo

A MCMC sampler for continuous distributions | %"

Explore sample space by Hamiltonian dynamics rather than random walk
Tolerant to strong correlation structure

Outperform many other MCMC methods in high dimensional space



HMC for PR Boltzmann Machines

 The gradient of probabilistic relaxation of Boltzmann machines is easy to
compute.

« HMC is available for Boltzmann machines now!
e Straightforward to adapt HMC with the structure of Boltzmann machines.

But, the multimodality of relaxed Boltzmann machines makes HMC
performs poorly in general.



Geometry




Geometric perspective has been explored in slice sampling.

Information geometry studies the space of probabillity distribution families.

Recent advance in Manifold HMC reveals promising applications of
Information geometry for Bayesian inference.

Geometry is also crucial in sampling PR Boltzmann machines



Beyond Deep Boltzmann
Machines




In a world not just deep

The computation complexity of learning on general architecture
Generalize learning algorithm for other undirected graphical models
Continual learning with general Boltzmann machines

Next inference challenge: Bayesian General Boltzmann machines!



Charles Sutton

Zoubin Ghahramani

Amos Storkey
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