
Inference on Boltzmann Machines
Beyond Layer Architectures

—Probabilistic Continuous Relaxation
Hamiltonian Monte Carlo

Geometry

Yichuan Zhang

15th March

CamAIML 2018

A long time ago in a paper, before
the rise of Deep Learning….

A Short History of
Boltzmann Machines

(1985-2009)

General Boltzmann Machines(1984-86)
COGNITIVE SCIENCE 9, 147-169 (1985)

A Learning Algorithm for
Boltzmann Machines*

DAVID H. ACKLEY
GEOFFREY E. HINTON

Computer Science Department
Carnegie-Mellon University

TERRENCE J. SEJNOWSKI
Biophysics Department

The Johns Hopkins University

The computotionol power of massively parallel networks of simple processing
elements resides in the communication bandwidth provided by the hardware
connections between elements. These connections con allow a significant
fraction of the knowledge of the system to be applied to an instance of a prob-
lem in o very short time. One kind of computation for which massively porollel
networks appear to be well suited is large constraint satisfaction searches,
but to use the connections efficiently two conditions must be met: First, a
search technique that is suitable for parallel networks must be found. Second,
there must be some way of choosing internal representations which allow the
preexisting hardware connections to be used efficiently for encoding the con-
straints in the domain being searched. We describe a generol parallel search
method, based on statistical mechanics, and we show how it leads to a gen-
eral learning rule for modifying the connection strengths so as to incorporate
knowledge obout o task domain in on efficient way. We describe some simple
examples in which the learning algorithm creates internal representations
thot ore demonstrobly the most efficient way of using the preexisting connec-
tivity structure.

1. INTRODUCTION

Evidence about the architecture of the brain and the potential of the new
VLSI technology have led to a resurgence of interest in “connectionist” sys-

l The research reported here was supported by grants from the System Development
Foundation. We thank Peter Brown, Francis Crick, Mark Derthick, Scott Fahlman, Jerry
Feldman, Stuart Geman, Gail Gong, John Hopfield, Jay McClelland, Barak Pearlmutter,
Harry Printz, Dave Rumelhart, Tim Shallice, Paul Smolensky, Rick Szeliski, and Venkatara-
man Venkatasubramanian for helpful discussions.

Reprint requests should be addressed to David Ackley, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA 15213.

147

CHAPTER 7

Learning and Relearning in Boltzmann Machines

G. E. HINTON and T . J. SEJNOWSKI

Many of the chapters in this volume make use of the ability of a paral-
lel network to perform cooperative searches for good solutions to prob-
lems. The basic idea is simple: The weights on the connections
between processing units encode knowledge about how things nornlally
f i t together in some domain and the initial states or external inputs to a
subset of the units encode some fragments of a structure within the
domain. These fragments constitute a problem: What is the whole
structure from which they probably came? The network computes a
"good solution" to the problem by repeatedly updating the states of
units that represent possible other parts of the structure until the net-
work eventually settles into a stable state of activity that represents the
solution.

One field in which this style of computation seems particularly
appropriate is vision (Ballard, Hinton, & Sejnowski, 1983). A visual
system must be able to solve large constraint-satisfaction problems
rapidly in order to interpret a two-dimensional intensity image in terms
of the depths and orientations of the three-dimensional surfaces in the
world that gave rise to that image. In general, the information in the
image is not sufficient to specify the three-dimensional surfaces unless
the interpretive process makes use of additional plausible constraints
about the kinds of structures that typically appear. Neighboring pieces
of an image, for example, usually depict fragments of surface that have
similar depths, similar surface orientations, and the same reflectance.
The most plausible interpretation of an image is the one that satisfies

Hummel and Zucker (1983) and Hopfield (1982) have shown that
some relaxation Schemes have an associated "potential" or cost function
and that the states to which the network converges are local minima of
this function. This means that the networks are performing optiniiza-
tion of a well-defined function. Unfortunately, there is no guarantee
that the network will find the best minimum. One possibility is to
redefine the problem as finding the local minimum which is closest to
the initial state. This is useful if the minima are used to represent
"items" in a memory, and the initial states are queries to memory
which may contain missing or erroneous information. The network
simply finds the minimum that best fits the query. This idea was used
by Hopfield (1982) who introduced an interesting kind of network in
which the units were always in one of two states. ' Hopfield showed that
if the units are syn~metrically connected (i.e., the weight from unit i to
unit j exactly equals the weight from unit j to unit i) and if they are
updated one at a time, each update reduces (or at worst does not
increase) the value of a cost function which he called "energy" because
of the analogy with physical systems. Consequently, repeated iterations
are guaranteed to find an energy minimum. T h e global energy of the
system is defined as

where w,, is the strength of connection (synaptic weight) from the , j th
to the i th unit, s, is the state of the i t h unit (0 or l) , and 0 , is a
threshold.

T h e updating rule is to switch each unit into whichever of its two
states yields the lower total energy given the current states of the other
units. Because the connections are symmetrical, the difference between
the energy of the whole system with the k t h hypothesis false and its
energy with the k th hypothesis t rue can be determined locally by the
k t h unit, and is just

Therefore, the rule for minimizing the energy contributed by a unit is
to adopt the true state if its total input f rom the other units exceeds its
threshold. This is the familiar rule for binary threshold units.

I Hopfield used the states 1 and - 1 because his model was derived from physical sys-
tems called spin glasses in which spins are either "up" or "down." Provided the units
have thresholds, models that use 1 and - 1 can be translated into models that use 1 and 0
and have different thresholds.

The Evolution of Boltzmann Machines
Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 693-700).

1985 1986-2002 2006 2009

Restricted Boltzmann Machines(1986)

Restricted Boltzmann Machines(2002)
ARTICLE Communicated by Javier Movellan

Training Products of Experts by Minimizing
Contrastive Divergence

Geoffrey E. Hinton
hinton@cs.toronto.edu
Gatsby Computational Neuroscience Unit, University College London, London
WC1N 3AR, U.K.

It is possible to combine multiple latent-variable models of the same data
by multiplying their probability distributions together and then renor-
malizing. This way of combining individual “expert” models makes it
hard to generate samples from the combined model but easy to infer the
values of the latent variables of each expert, because the combination rule
ensures that the latent variables of different experts are conditionally in-
dependent when given the data. A product of experts (PoE) is therefore
an interesting candidate for a perceptual system in which rapid inference
is vital and generation is unnecessary. Training a PoE by maximizing the
likelihood of the data is difficult because it is hard even to approximate
the derivatives of the renormalization term in the combination rule. For-
tunately, a PoE can be trained using a different objective function called
“contrastive divergence” whose derivatives with regard to the parameters
can be approximated accurately and efficiently. Examples are presented of
contrastive divergence learning using several types of expert on several
types of data.

1 Introduction

One way of modeling a complicated, high-dimensional data distribution is
to use a large number of relatively simple probabilistic models and somehow
combine the distributions specified by each model. A well-known example
of this approach is a mixture of gaussians in which each simple model is
a gaussian, and the combination rule consists of taking a weighted arith-
metic mean of the individual distributions. This is equivalent to assuming
an overall generative model in which each data vector is generated by first
choosing one of the individual generative models and then allowing that
individual model to generate the data vector. Combining models by form-
ing a mixture is attractive for several reasons. It is easy to fit mixtures of
tractable models to data using expectation-maximization (EM) or gradient
ascent, and mixtures are usually considerably more powerful than their in-
dividual components. Indeed, if sufficiently many models are included in

Neural Computation 14, 1771–1800 (2002) c⃝ 2002 Massachusetts Institute of Technology

1774 Geoffrey E. Hinton

Figure 1: A visualization of alternating Gibbs sampling. At time 0, the visible
variables represent a data vector, and the hidden variables of all the experts
are updated in parallel with samples from their posterior distribution given the
visible variables. At time 1, the visible variables are all updated to produce a re-
construction of the original data vector from the hidden variables, and then the
hidden variables are again updated in parallel. If this process is repeated suffi-
ciently often, it is possible to get arbitrarily close to the equilibrium distribution.
The correlations ⟨sisj⟩ shown on the connections between visible and hidden
variables are the statistics used for learning in RBMs, which are described in
section 7.

individual experts also have the property that the components of the data
vector are conditionally independent given the hidden state of the expert,
the hidden and visible variables form a bipartite graph, and it is possible to
update all of the components of the data vector in parallel given the hidden
states of all the experts. So Gibbs sampling can alternate between parallel
updates of the hidden and visible variables (see Figure 1). To get an un-
biased estimate of the gradient for the PoE, it is necessary for the Markov
chain to converge to the equilibrium distribution.

Unfortunately, even if it is computationally feasible to approach the equi-
librium distribution before taking samples, there is a second, serious diffi-
culty. Samples from the equilibrium distribution generally have high vari-
ance since they come from all over the model’s distribution. This high vari-
ance swamps the estimate of the derivative. Worse still, the variance in the
samples depends on the parameters of the model. This variation in the vari-
ance causes the parameters to be repelled from regions of high variance even
if the gradient is zero. To understand this subtle effect, consider a horizon-
tal sheet of tin that is resonating in such a way that some parts have strong
vertical oscillations and other parts are motionless. Sand scattered on the
tin will accumulate in the motionless areas even though the time-averaged
gradient is zero everywhere.

3 Learning by Minimizing Contrastive Divergence

Maximizing the log likelihood of the data (averaged over the data distribu-
tion) is equivalent to minimizing the Kullback-Leibler divergence between
the data distribution, P0, and the equilibrium distribution over the visi-

The Evolution of Boltzmann Machines
Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 693-700).

1985 1986-2002 2006 2009

Deep Belief Networks(2006)

The Evolution of Boltzmann Machines
Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 693-700).

1985 1986-2002 2006 2009

Deep Boltzmann Machines(2009)

Deep Boltzmann Machines

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.

h

output

h

W W

vq(h |v)

W
1

2

2

2

2 1T T

Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

The Evolution of Boltzmann Machines
Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Salakhutdinov, R., & Larochelle, H. (2010, March). Efficient learning of deep Boltzmann machines. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 693-700).

1985 1986-2002 2006 2009

A Summary of the History

• General BMs was proposed as a type of cognitive models!

• RBMs became popular because of efficient training algorithm.

• Deep architecture arose to create more powerful BMs by stacking RBMs.

• DBMs are still one of the hardest types of neural networks to train today.

A Summary of the History

• General BMs was proposed as a type of cognitive models!

• RBMs became popular because of efficient training algorithm.

• Deep architecture arose to create more powerful BMs by stacking RBMs.

• DBMs are still one of the hardest types of neural networks to train today.

Are there tractable learning algorithms for
architectures that are stacks of RBMs?

The Challenge

General Boltzmann Machines

systems. On synthetic problems and a real world problem in text processing, we show that HMC in
the continuous relaxation can be much more accurate than standard MCMC methods on the discrete
distribution.

The only previous work of which we are aware that uses the Gaussian integral trick for inference
in graphical models is Martens and Sutskever [12]. They use the trick to transform an arbitrary
MRF into an equivalent restricted Boltzmann machine (RBM), on which they then do block Gibbs
sampling. They show that this transformation is useful when each block Gibbs step can be performed
in parallel. However, unlike the current work, they do not sum out the discrete variables, so they do
not perform a full continuous relaxation.

2 Background

Consider an undirected graphical model over random vectors t = (t1, t2, . . . tM) where each
ti 2 {0, 1, 2, . . . Ki � 1}. We will employ a 1 of Ki representation for each non-binary ti and
concatenate the resulting binary variables into the vector s = (s1 . . . sN). We will also focus on
pairwise models over a graph G = (V, E) where V = {1, 2, . . . N}. Every discrete undirected
model can be converted into a pairwise model at the cost of expanding the state space. The undi-
rected pairwise graphical model can be written in the form

p(s) =
1

Z

Y

(i,j)2G

exp(�Eij(si, sj)) (1)

where Z is a normalisation term, and is a sum over all valid states of (s1, s2, . . . , sN) that comply
with the 1 of Ki constraints. Equivalently we can set Eij(si, sj) to be very large when si and sj

are derived from the same variable tk (for some k and i 6= j, and expanding G to include (i, j)),
making the resulting product for the terms that break the 1 of Ki constraints to be exponentially
small. Henceforth, without loss of generality, we can consider binary pairwise models, and assume
E captures any additional constraints that might apply. Then this model takes the general form of a
Boltzmann machine or binary MRF, and can be conveniently rewritten as

p(s) =
1

Z
exp

⇢
aT s +

1

2
sT

W s

�
(2)

where a 2 RN , and W , a real symmetric matrix, are the model parameters. The normalization
function is

Z =
X

s

exp

⇢
aT s +

1

2
sT

W s

�
. (3)

3 Gaussian Integral Trick

Inference in Boltzmann machines (which is equivalent to inference in Ising models) has always been
a challenging problem. Typically Markov chain Monte Carlo procedures such as Gibbs sampling
have been used, but the high levels of connectivity in Boltzmann machines can cause trouble and
result in slow mixing in many situations. Furthermore for frustrated systems, such models are highly
multimodal [1], often with large potential barriers between the different modes.

In many situations, the Hamiltonian Monte Carlo method has provided a more efficient sampling
method for highly coupled systems [17], but is only appropriate in real valued problems. For this
reason, we choose to work with a real valued augmentation of the Boltzmann machine using the
Gaussian integral trick. The main idea is to introduce a real valued auxiliary vector x 2 RN in such
a way that the sT

W s term from (2) cancels out [8]. We generalise the standard form of the Gaussian
integral trick by using the following form for the conditional distribution of the auxiliary variable x:

p(x|s) = N (x; A(W + D)s, A(W + D)AT) (4)
for any choice of invertible matrix A and any diagonal matrix D for which W + D is positive
definite. N (x;m, ⌃) denotes the Gaussian distribution in x with mean m and covariance ⌃. The
resulting joint distribution over x and s is

p(x, s) / exp(�1

2
(x�A(W +D)s)T (A�1)T (W +D)�1

A
�1(x�A(W +D)s)+

1

2
sT

W s+aT s).

(5)

2

systems. On synthetic problems and a real world problem in text processing, we show that HMC in
the continuous relaxation can be much more accurate than standard MCMC methods on the discrete
distribution.

The only previous work of which we are aware that uses the Gaussian integral trick for inference
in graphical models is Martens and Sutskever [12]. They use the trick to transform an arbitrary
MRF into an equivalent restricted Boltzmann machine (RBM), on which they then do block Gibbs
sampling. They show that this transformation is useful when each block Gibbs step can be performed
in parallel. However, unlike the current work, they do not sum out the discrete variables, so they do
not perform a full continuous relaxation.

2 Background

Consider an undirected graphical model over random vectors t = (t1, t2, . . . tM) where each
ti 2 {0, 1, 2, . . . Ki � 1}. We will employ a 1 of Ki representation for each non-binary ti and
concatenate the resulting binary variables into the vector s = (s1 . . . sN). We will also focus on
pairwise models over a graph G = (V, E) where V = {1, 2, . . . N}. Every discrete undirected
model can be converted into a pairwise model at the cost of expanding the state space. The undi-
rected pairwise graphical model can be written in the form

p(s) =
1

Z

Y

(i,j)2G

exp(�Eij(si, sj)) (1)

where Z is a normalisation term, and is a sum over all valid states of (s1, s2, . . . , sN) that comply
with the 1 of Ki constraints. Equivalently we can set Eij(si, sj) to be very large when si and sj

are derived from the same variable tk (for some k and i 6= j, and expanding G to include (i, j)),
making the resulting product for the terms that break the 1 of Ki constraints to be exponentially
small. Henceforth, without loss of generality, we can consider binary pairwise models, and assume
E captures any additional constraints that might apply. Then this model takes the general form of a
Boltzmann machine or binary MRF, and can be conveniently rewritten as

p(s) =
1

Z
exp

⇢
aT s +

1

2
sT

W s

�
(2)

where a 2 RN , and W , a real symmetric matrix, are the model parameters. The normalization
function is

Z =
X

s

exp

⇢
aT s +

1

2
sT

W s

�
. (3)

3 Gaussian Integral Trick

Inference in Boltzmann machines (which is equivalent to inference in Ising models) has always been
a challenging problem. Typically Markov chain Monte Carlo procedures such as Gibbs sampling
have been used, but the high levels of connectivity in Boltzmann machines can cause trouble and
result in slow mixing in many situations. Furthermore for frustrated systems, such models are highly
multimodal [1], often with large potential barriers between the different modes.

In many situations, the Hamiltonian Monte Carlo method has provided a more efficient sampling
method for highly coupled systems [17], but is only appropriate in real valued problems. For this
reason, we choose to work with a real valued augmentation of the Boltzmann machine using the
Gaussian integral trick. The main idea is to introduce a real valued auxiliary vector x 2 RN in such
a way that the sT

W s term from (2) cancels out [8]. We generalise the standard form of the Gaussian
integral trick by using the following form for the conditional distribution of the auxiliary variable x:

p(x|s) = N (x; A(W + D)s, A(W + D)AT) (4)
for any choice of invertible matrix A and any diagonal matrix D for which W + D is positive
definite. N (x;m, ⌃) denotes the Gaussian distribution in x with mean m and covariance ⌃. The
resulting joint distribution over x and s is

p(x, s) / exp(�1

2
(x�A(W +D)s)T (A�1)T (W +D)�1

A
�1(x�A(W +D)s)+

1

2
sT

W s+aT s).

(5)

2

s = (sh, sv)
<latexit sha1_base64="0jIpjSPsL38314J2ojqq3lcO3vI=">AAACEnicbVDLSsNAFL2pr1pfUZduBotQRUoigroQim5cVjC20IYymU7aoZMHM5NCCf0HN/6KGxcqbl2582+ctAFr9cDAuefcy9x7vJgzqSzryygsLC4trxRXS2vrG5tb5vbOvYwSQahDIh6Jpocl5SykjmKK02YsKA48Thve4DrzG0MqJIvCOzWKqRvgXsh8RrDSUsc8agdY9T0/lWN0iSo/Vad/jGaq4SHqmGWrak2A/hI7J2XIUe+Yn+1uRJKAhopwLGXLtmLlplgoRjgdl9qJpDEmA9yjLU1DHFDpppObxuhAK13kR0K/UKGJOjuR4kDKUeDpzmxLOe9l4n9eK1H+uZuyME4UDcn0Iz/hSEUoCwh1maBE8ZEmmAimd0WkjwUmSsdY0iHY8yf/Jc5J9aJq356Wa1d5GkXYg32ogA1nUIMbqIMDBB7gCV7g1Xg0no03433aWjDymV34BePjG7uFnaQ=</latexit><latexit sha1_base64="0jIpjSPsL38314J2ojqq3lcO3vI=">AAACEnicbVDLSsNAFL2pr1pfUZduBotQRUoigroQim5cVjC20IYymU7aoZMHM5NCCf0HN/6KGxcqbl2582+ctAFr9cDAuefcy9x7vJgzqSzryygsLC4trxRXS2vrG5tb5vbOvYwSQahDIh6Jpocl5SykjmKK02YsKA48Thve4DrzG0MqJIvCOzWKqRvgXsh8RrDSUsc8agdY9T0/lWN0iSo/Vad/jGaq4SHqmGWrak2A/hI7J2XIUe+Yn+1uRJKAhopwLGXLtmLlplgoRjgdl9qJpDEmA9yjLU1DHFDpppObxuhAK13kR0K/UKGJOjuR4kDKUeDpzmxLOe9l4n9eK1H+uZuyME4UDcn0Iz/hSEUoCwh1maBE8ZEmmAimd0WkjwUmSsdY0iHY8yf/Jc5J9aJq356Wa1d5GkXYg32ogA1nUIMbqIMDBB7gCV7g1Xg0no03433aWjDymV34BePjG7uFnaQ=</latexit><latexit sha1_base64="0jIpjSPsL38314J2ojqq3lcO3vI=">AAACEnicbVDLSsNAFL2pr1pfUZduBotQRUoigroQim5cVjC20IYymU7aoZMHM5NCCf0HN/6KGxcqbl2582+ctAFr9cDAuefcy9x7vJgzqSzryygsLC4trxRXS2vrG5tb5vbOvYwSQahDIh6Jpocl5SykjmKK02YsKA48Thve4DrzG0MqJIvCOzWKqRvgXsh8RrDSUsc8agdY9T0/lWN0iSo/Vad/jGaq4SHqmGWrak2A/hI7J2XIUe+Yn+1uRJKAhopwLGXLtmLlplgoRjgdl9qJpDEmA9yjLU1DHFDpppObxuhAK13kR0K/UKGJOjuR4kDKUeDpzmxLOe9l4n9eK1H+uZuyME4UDcn0Iz/hSEUoCwh1maBE8ZEmmAimd0WkjwUmSsdY0iHY8yf/Jc5J9aJq356Wa1d5GkXYg32ogA1nUIMbqIMDBB7gCV7g1Xg0no03433aWjDymV34BePjG7uFnaQ=</latexit><latexit sha1_base64="0jIpjSPsL38314J2ojqq3lcO3vI=">AAACEnicbVDLSsNAFL2pr1pfUZduBotQRUoigroQim5cVjC20IYymU7aoZMHM5NCCf0HN/6KGxcqbl2582+ctAFr9cDAuefcy9x7vJgzqSzryygsLC4trxRXS2vrG5tb5vbOvYwSQahDIh6Jpocl5SykjmKK02YsKA48Thve4DrzG0MqJIvCOzWKqRvgXsh8RrDSUsc8agdY9T0/lWN0iSo/Vad/jGaq4SHqmGWrak2A/hI7J2XIUe+Yn+1uRJKAhopwLGXLtmLlplgoRjgdl9qJpDEmA9yjLU1DHFDpppObxuhAK13kR0K/UKGJOjuR4kDKUeDpzmxLOe9l4n9eK1H+uZuyME4UDcn0Iz/hSEUoCwh1maBE8ZEmmAimd0WkjwUmSsdY0iHY8yf/Jc5J9aJq356Wa1d5GkXYg32ogA1nUIMbqIMDBB7gCV7g1Xg0no03433aWjDymV34BePjG7uFnaQ=</latexit>

✓ = (a,W)
<latexit sha1_base64="aKmIqKhws1b3PQBvfSS+aw5+jnU=">AAAB/nicbVDLSsNAFJ3UV62vqODGzWARKkhJRFAXQtGNywrGFppQJtNJO3TyYOZGKLELf8WNCxW3foc7/8ZJm4W2Hhg4nHMv98zxE8EVWNa3UVpYXFpeKa9W1tY3NrfM7Z17FaeSMofGIpZtnygmeMQc4CBYO5GMhL5gLX94nfutByYVj6M7GCXMC0k/4gGnBLTUNfdcGDAglzU3JDDwg4yMj3HrqGtWrbo1AZ4ndkGqqECza365vZimIYuACqJUx7YS8DIigVPBxhU3VSwhdEj6rKNpREKmvGySf4wPtdLDQSz1iwBP1N8bGQmVGoW+nsxTqlkvF//zOikE517GoyQFFtHpoSAVGGKcl4F7XDIKYqQJoZLrrJgOiCQUdGUVXYI9++V54pzUL+r27Wm1cVW0UUb76ADVkI3OUAPdoCZyEEWP6Bm9ojfjyXgx3o2P6WjJKHZ20R8Ynz898JUl</latexit><latexit sha1_base64="aKmIqKhws1b3PQBvfSS+aw5+jnU=">AAAB/nicbVDLSsNAFJ3UV62vqODGzWARKkhJRFAXQtGNywrGFppQJtNJO3TyYOZGKLELf8WNCxW3foc7/8ZJm4W2Hhg4nHMv98zxE8EVWNa3UVpYXFpeKa9W1tY3NrfM7Z17FaeSMofGIpZtnygmeMQc4CBYO5GMhL5gLX94nfutByYVj6M7GCXMC0k/4gGnBLTUNfdcGDAglzU3JDDwg4yMj3HrqGtWrbo1AZ4ndkGqqECza365vZimIYuACqJUx7YS8DIigVPBxhU3VSwhdEj6rKNpREKmvGySf4wPtdLDQSz1iwBP1N8bGQmVGoW+nsxTqlkvF//zOikE517GoyQFFtHpoSAVGGKcl4F7XDIKYqQJoZLrrJgOiCQUdGUVXYI9++V54pzUL+r27Wm1cVW0UUb76ADVkI3OUAPdoCZyEEWP6Bm9ojfjyXgx3o2P6WjJKHZ20R8Ynz898JUl</latexit><latexit sha1_base64="aKmIqKhws1b3PQBvfSS+aw5+jnU=">AAAB/nicbVDLSsNAFJ3UV62vqODGzWARKkhJRFAXQtGNywrGFppQJtNJO3TyYOZGKLELf8WNCxW3foc7/8ZJm4W2Hhg4nHMv98zxE8EVWNa3UVpYXFpeKa9W1tY3NrfM7Z17FaeSMofGIpZtnygmeMQc4CBYO5GMhL5gLX94nfutByYVj6M7GCXMC0k/4gGnBLTUNfdcGDAglzU3JDDwg4yMj3HrqGtWrbo1AZ4ndkGqqECza365vZimIYuACqJUx7YS8DIigVPBxhU3VSwhdEj6rKNpREKmvGySf4wPtdLDQSz1iwBP1N8bGQmVGoW+nsxTqlkvF//zOikE517GoyQFFtHpoSAVGGKcl4F7XDIKYqQJoZLrrJgOiCQUdGUVXYI9++V54pzUL+r27Wm1cVW0UUb76ADVkI3OUAPdoCZyEEWP6Bm9ojfjyXgx3o2P6WjJKHZ20R8Ynz898JUl</latexit><latexit sha1_base64="aKmIqKhws1b3PQBvfSS+aw5+jnU=">AAAB/nicbVDLSsNAFJ3UV62vqODGzWARKkhJRFAXQtGNywrGFppQJtNJO3TyYOZGKLELf8WNCxW3foc7/8ZJm4W2Hhg4nHMv98zxE8EVWNa3UVpYXFpeKa9W1tY3NrfM7Z17FaeSMofGIpZtnygmeMQc4CBYO5GMhL5gLX94nfutByYVj6M7GCXMC0k/4gGnBLTUNfdcGDAglzU3JDDwg4yMj3HrqGtWrbo1AZ4ndkGqqECza365vZimIYuACqJUx7YS8DIigVPBxhU3VSwhdEj6rKNpREKmvGySf4wPtdLDQSz1iwBP1N8bGQmVGoW+nsxTqlkvF//zOikE517GoyQFFtHpoSAVGGKcl4F7XDIKYqQJoZLrrJgOiCQUdGUVXYI9++V54pzUL+r27Wm1cVW0UUb76ADVkI3OUAPdoCZyEEWP6Bm9ojfjyXgx3o2P6WjJKHZ20R8Ynz898JUl</latexit>

Inference for Learning

s ⇠ p✓(s)
<latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit><latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit><latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit><latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit>

sh ⇠ p✓(sh|s(n)v)
<latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit><latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit><latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit><latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit>

�@W log p(D|✓) = 1

N

X

n

hssT ip
✓,s

(n)
v

� hssT ip✓

<latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="X/BbPPQRM1pmBhxdK1enSbL+gJw=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBccW2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK00u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5jjaeLcecs3PnpCwrjDua2NL9+WLGc2uneeJu5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrgg14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuqqpq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="D9XYkBEUuskmocpV0KUpT5yP6/A=">AAACmniclVFNaxsxENVuP5K6aev22ouoKTjQmN1c2h4CheTQXkLa2nHAcpZZWWuLaLWLNBswQj8tfyK3/ptq14a0SS8dEDze0xuN3uS1khaT5FcUP3r85OnO7rPe870XL1/1X++d26oxXEx4pSpzkYMVSmoxQYlKXNRGQJkrMc2vjlt9ei2MlZUe47oW8xKWWhaSAwYq698csBoMSlCZm3rKVLWk9ZCVgCsOyp0EKtiRMlwJhH16RFlhgLvUu1PPbFNmOphAL5WgnSsvnPV36HLMTKdmrs7cpsuHOzm7vnRDve+9pwf/3cf7rD9IRklX9CFIt2BAtnWW9W/ZouJNKTRyBdbO0qTGuWsT4Er4HmusqIFfwVLMAtRQCjt3Xcyevg/MghaVCUcj7dg/HQ5Ka9dlHm62c9v7Wkv+S5s1WHyaO6nrBoXmm4eKRlGsaLszupBGcFTrAIAbGWalfAVhDRg22wshpPe//BBMDkefR+n3hOySt+QdGZKUfCRfyFdyRiaER4PoW/Qj+hkP49N4vEkrjraxvSF/VXz+G1K20ws=</latexit><latexit sha1_base64="D9XYkBEUuskmocpV0KUpT5yP6/A=">AAACmniclVFNaxsxENVuP5K6aev22ouoKTjQmN1c2h4CheTQXkLa2nHAcpZZWWuLaLWLNBswQj8tfyK3/ptq14a0SS8dEDze0xuN3uS1khaT5FcUP3r85OnO7rPe870XL1/1X++d26oxXEx4pSpzkYMVSmoxQYlKXNRGQJkrMc2vjlt9ei2MlZUe47oW8xKWWhaSAwYq698csBoMSlCZm3rKVLWk9ZCVgCsOyp0EKtiRMlwJhH16RFlhgLvUu1PPbFNmOphAL5WgnSsvnPV36HLMTKdmrs7cpsuHOzm7vnRDve+9pwf/3cf7rD9IRklX9CFIt2BAtnWW9W/ZouJNKTRyBdbO0qTGuWsT4Er4HmusqIFfwVLMAtRQCjt3Xcyevg/MghaVCUcj7dg/HQ5Ka9dlHm62c9v7Wkv+S5s1WHyaO6nrBoXmm4eKRlGsaLszupBGcFTrAIAbGWalfAVhDRg22wshpPe//BBMDkefR+n3hOySt+QdGZKUfCRfyFdyRiaER4PoW/Qj+hkP49N4vEkrjraxvSF/VXz+G1K20ws=</latexit><latexit sha1_base64="7f8oI7wTVfIA/dbh2SRgS59IN94=">AAACpXiclVHLbhMxFPVMeZTwCmXJxiJCSiUazXQDLJAqygI2VYGkqRSn1h3Hk1j1eCzbUymy/Gn9CXb8DZ5JpELLhitZOjrH5/r63EJLYV2W/UrSnXv3HzzcfdR7/OTps+f9F3tntm4M4xNWy9qcF2C5FIpPnHCSn2vDoSoknxaXx60+veLGilqN3VrzeQVLJUrBwEWK9q8PiAbjBEjqpwETWS+xHpIK3IqB9J8jFe0OE7fiDvbxR0xKA8znwZ8EYpuKqmgCtZQcd66i9DbcoIsxMZ1KvaZ+0+XtjUyvLvxQ7YcQ8MF/9wmB9gfZKOsK3wX5FgzQtk5p/ydZ1KypuHJMgrWzPNNu7tsEmOShRxrLNbBLWPJZhAoqbue+izngN5FZ4LI28SiHO/ZPh4fK2nVVxJvt3Pa21pL/0maNK9/PvVC6cVyxzUNlI7GrcbszvBCGMyfXEQAzIs6K2QriGlzcbC+GkN/+8l0wORx9GOXfssHRp20au+gVeo2GKEfv0BH6gk7RBLFkkHxNvic/0mF6ko7Ts83VNNl6XqK/KqW/AYZK1Bg=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit>

D = {s(i)v }Ni=1
<latexit sha1_base64="iYShAxvsU5WSg2fC1s7ksGGiGTM=">AAACEnicbVDLSsNAFJ34rPUVdekmWITqoiQiqItCUReupIKxhaYNk+mkHTp5MDMplCH/4MZfceNCxa0rd/6NkzQLbT0wcOace7n3Hi+mhAvT/NYWFpeWV1ZLa+X1jc2tbX1n94FHCUPYRhGNWNuDHFMSYlsQQXE7ZhgGHsUtb3SV+a0xZpxE4b2YxLgbwEFIfIKgUJKrHzsBFEMEqbxO647Mf54veeqOe7JKjlIndSWpW2nv1tUrZs3MYcwTqyAVUKDp6l9OP0JJgEOBKOS8Y5mx6ErIBEEUp2Un4TiGaAQHuKNoCAPMuzK/KTUOldI3/IipFwojV393SBhwPgk8VZntzGe9TPzP6yTCP+9KEsaJwCGaDvITaojIyAIy+oRhJOhEEYgYUbsaaAgZRELFWFYhWLMnzxP7pHZRs+5OK43LIo0S2AcHoAoscAYa4AY0gQ0QeATP4BW8aU/ai/aufUxLF7SiZw/8gfb5AxRPnno=</latexit><latexit sha1_base64="iYShAxvsU5WSg2fC1s7ksGGiGTM=">AAACEnicbVDLSsNAFJ34rPUVdekmWITqoiQiqItCUReupIKxhaYNk+mkHTp5MDMplCH/4MZfceNCxa0rd/6NkzQLbT0wcOace7n3Hi+mhAvT/NYWFpeWV1ZLa+X1jc2tbX1n94FHCUPYRhGNWNuDHFMSYlsQQXE7ZhgGHsUtb3SV+a0xZpxE4b2YxLgbwEFIfIKgUJKrHzsBFEMEqbxO647Mf54veeqOe7JKjlIndSWpW2nv1tUrZs3MYcwTqyAVUKDp6l9OP0JJgEOBKOS8Y5mx6ErIBEEUp2Un4TiGaAQHuKNoCAPMuzK/KTUOldI3/IipFwojV393SBhwPgk8VZntzGe9TPzP6yTCP+9KEsaJwCGaDvITaojIyAIy+oRhJOhEEYgYUbsaaAgZRELFWFYhWLMnzxP7pHZRs+5OK43LIo0S2AcHoAoscAYa4AY0gQ0QeATP4BW8aU/ai/aufUxLF7SiZw/8gfb5AxRPnno=</latexit><latexit sha1_base64="iYShAxvsU5WSg2fC1s7ksGGiGTM=">AAACEnicbVDLSsNAFJ34rPUVdekmWITqoiQiqItCUReupIKxhaYNk+mkHTp5MDMplCH/4MZfceNCxa0rd/6NkzQLbT0wcOace7n3Hi+mhAvT/NYWFpeWV1ZLa+X1jc2tbX1n94FHCUPYRhGNWNuDHFMSYlsQQXE7ZhgGHsUtb3SV+a0xZpxE4b2YxLgbwEFIfIKgUJKrHzsBFEMEqbxO647Mf54veeqOe7JKjlIndSWpW2nv1tUrZs3MYcwTqyAVUKDp6l9OP0JJgEOBKOS8Y5mx6ErIBEEUp2Un4TiGaAQHuKNoCAPMuzK/KTUOldI3/IipFwojV393SBhwPgk8VZntzGe9TPzP6yTCP+9KEsaJwCGaDvITaojIyAIy+oRhJOhEEYgYUbsaaAgZRELFWFYhWLMnzxP7pHZRs+5OK43LIo0S2AcHoAoscAYa4AY0gQ0QeATP4BW8aU/ai/aufUxLF7SiZw/8gfb5AxRPnno=</latexit><latexit sha1_base64="iYShAxvsU5WSg2fC1s7ksGGiGTM=">AAACEnicbVDLSsNAFJ34rPUVdekmWITqoiQiqItCUReupIKxhaYNk+mkHTp5MDMplCH/4MZfceNCxa0rd/6NkzQLbT0wcOace7n3Hi+mhAvT/NYWFpeWV1ZLa+X1jc2tbX1n94FHCUPYRhGNWNuDHFMSYlsQQXE7ZhgGHsUtb3SV+a0xZpxE4b2YxLgbwEFIfIKgUJKrHzsBFEMEqbxO647Mf54veeqOe7JKjlIndSWpW2nv1tUrZs3MYcwTqyAVUKDp6l9OP0JJgEOBKOS8Y5mx6ErIBEEUp2Un4TiGaAQHuKNoCAPMuzK/KTUOldI3/IipFwojV393SBhwPgk8VZntzGe9TPzP6yTCP+9KEsaJwCGaDvITaojIyAIy+oRhJOhEEYgYUbsaaAgZRELFWFYhWLMnzxP7pHZRs+5OK43LIo0S2AcHoAoscAYa4AY0gQ0QeATP4BW8aU/ai/aufUxLF7SiZw/8gfb5AxRPnno=</latexit>

Inference for Learning

s ⇠ p✓(s)
<latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit><latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit><latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit><latexit sha1_base64="kUiBwcmxOSeMuoYxptjXN+lGALQ=">AAACDnicbVBNS8NAEN3Ur1q/oh69LBalXkoignorevFYwWihCWGz3bRLNx/sToQS+g+8+Fe8eFDx6tmb/8ZNG1BbHww83pthZl6QCq7Asr6MysLi0vJKdbW2tr6xuWVu79yqJJOUOTQRiewERDHBY+YAB8E6qWQkCgS7C4aXhX93z6TiSXwDo5R5EenHPOSUgJZ889CNCAyCMFdj7Coe4dTPXRgwIOPGj3Xkm3WraU2A54ldkjoq0fbNT7eX0CxiMVBBlOraVgpeTiRwKti45maKpYQOSZ91NY1JxJSXT/4Z4wOt9HCYSF0x4In6eyInkVKjKNCdxYlq1ivE/7xuBuGZl/M4zYDFdLoozASGBBfh4B6XjIIYaUKo5PpWTAdEEgo6wpoOwZ59eZ44x83zpn19Um9dlGlU0R7aRw1ko1PUQleojRxE0QN6Qi/o1Xg0no03433aWjHKmV30B8bHNwfDnNw=</latexit>

sh ⇠ p✓(sh|s(n)v)
<latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit><latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit><latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit><latexit sha1_base64="/Ohp5kL47FiAdOyh9a8HKu4zqNQ=">AAACK3icbVDLSgMxFM34rPVVdekmWIR2U2ZEUHfFblxWsLbQqUMmzbShmcyQ3CmUYT7Ijb8iiAsrbv0P08eiDw8EDufce3Pv8WPBNdj22NrY3Nre2c3t5fcPDo+OCyenzzpKFGUNGolItXyimeCSNYCDYK1YMRL6gjX9QW3iN4dMaR7JJxjFrBOSnuQBpwSM5BVqbkig7wepzrw+djUPceylLvQZkKy0bJo5gBek4UtakuWs7BWKdsWeAq8TZ06KaI66V/hwuxFNQiaBCqJ127Fj6KREAaeCZXk30SwmdEB6rG2oJCHTnXR6bIYvjdLFQaTMk4Cn6mJHSkKtR6FvKier6lVvIv7ntRMIbjspl3ECTNLZR0EiMER4khzucsUoiJEhhCpudsW0TxShYPLNmxCc1ZPXSeOqcldxHq+L1ft5Gjl0ji5QCTnoBlXRA6qjBqLoFb2jLzS23qxP69v6mZVuWPOeM7QE6/cPSySpDA==</latexit>

�@W log p(D|✓) = 1

N

X

n

hssT ip
✓,s

(n)
v

� hssT ip✓

<latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="X/BbPPQRM1pmBhxdK1enSbL+gJw=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBccW2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK00u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5jjaeLcecs3PnpCwrjDua2NL9+WLGc2uneeJu5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrgg14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuqqpq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="D9XYkBEUuskmocpV0KUpT5yP6/A=">AAACmniclVFNaxsxENVuP5K6aev22ouoKTjQmN1c2h4CheTQXkLa2nHAcpZZWWuLaLWLNBswQj8tfyK3/ptq14a0SS8dEDze0xuN3uS1khaT5FcUP3r85OnO7rPe870XL1/1X++d26oxXEx4pSpzkYMVSmoxQYlKXNRGQJkrMc2vjlt9ei2MlZUe47oW8xKWWhaSAwYq698csBoMSlCZm3rKVLWk9ZCVgCsOyp0EKtiRMlwJhH16RFlhgLvUu1PPbFNmOphAL5WgnSsvnPV36HLMTKdmrs7cpsuHOzm7vnRDve+9pwf/3cf7rD9IRklX9CFIt2BAtnWW9W/ZouJNKTRyBdbO0qTGuWsT4Er4HmusqIFfwVLMAtRQCjt3Xcyevg/MghaVCUcj7dg/HQ5Ka9dlHm62c9v7Wkv+S5s1WHyaO6nrBoXmm4eKRlGsaLszupBGcFTrAIAbGWalfAVhDRg22wshpPe//BBMDkefR+n3hOySt+QdGZKUfCRfyFdyRiaER4PoW/Qj+hkP49N4vEkrjraxvSF/VXz+G1K20ws=</latexit><latexit sha1_base64="D9XYkBEUuskmocpV0KUpT5yP6/A=">AAACmniclVFNaxsxENVuP5K6aev22ouoKTjQmN1c2h4CheTQXkLa2nHAcpZZWWuLaLWLNBswQj8tfyK3/ptq14a0SS8dEDze0xuN3uS1khaT5FcUP3r85OnO7rPe870XL1/1X++d26oxXEx4pSpzkYMVSmoxQYlKXNRGQJkrMc2vjlt9ei2MlZUe47oW8xKWWhaSAwYq698csBoMSlCZm3rKVLWk9ZCVgCsOyp0EKtiRMlwJhH16RFlhgLvUu1PPbFNmOphAL5WgnSsvnPV36HLMTKdmrs7cpsuHOzm7vnRDve+9pwf/3cf7rD9IRklX9CFIt2BAtnWW9W/ZouJNKTRyBdbO0qTGuWsT4Er4HmusqIFfwVLMAtRQCjt3Xcyevg/MghaVCUcj7dg/HQ5Ka9dlHm62c9v7Wkv+S5s1WHyaO6nrBoXmm4eKRlGsaLszupBGcFTrAIAbGWalfAVhDRg22wshpPe//BBMDkefR+n3hOySt+QdGZKUfCRfyFdyRiaER4PoW/Qj+hkP49N4vEkrjraxvSF/VXz+G1K20ws=</latexit><latexit sha1_base64="7f8oI7wTVfIA/dbh2SRgS59IN94=">AAACpXiclVHLbhMxFPVMeZTwCmXJxiJCSiUazXQDLJAqygI2VYGkqRSn1h3Hk1j1eCzbUymy/Gn9CXb8DZ5JpELLhitZOjrH5/r63EJLYV2W/UrSnXv3HzzcfdR7/OTps+f9F3tntm4M4xNWy9qcF2C5FIpPnHCSn2vDoSoknxaXx60+veLGilqN3VrzeQVLJUrBwEWK9q8PiAbjBEjqpwETWS+xHpIK3IqB9J8jFe0OE7fiDvbxR0xKA8znwZ8EYpuKqmgCtZQcd66i9DbcoIsxMZ1KvaZ+0+XtjUyvLvxQ7YcQ8MF/9wmB9gfZKOsK3wX5FgzQtk5p/ydZ1KypuHJMgrWzPNNu7tsEmOShRxrLNbBLWPJZhAoqbue+izngN5FZ4LI28SiHO/ZPh4fK2nVVxJvt3Pa21pL/0maNK9/PvVC6cVyxzUNlI7GrcbszvBCGMyfXEQAzIs6K2QriGlzcbC+GkN/+8l0wORx9GOXfssHRp20au+gVeo2GKEfv0BH6gk7RBLFkkHxNvic/0mF6ko7Ts83VNNl6XqK/KqW/AYZK1Bg=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit><latexit sha1_base64="ANeqSLLXMwXoAdw/GRm1gVZ9lq0=">AAACpXiclVHLahsxFNVMX6n7ctNlN6Km4EBjZkqh7SIQ2izaTUhbOw5Yjrgja2wRjUZImoAR+rT+RHf5m2rGhrRJN70gOJyjc3V1bqGlsC7LrpL0zt179x/sPOw9evzk6bP+891TWzeG8QmrZW3OCrBcCsUnTjjJz7ThUBWST4uLz60+veTGilqN3VrzeQVLJUrBwEWK9n/uEw3GCZDUTwMmsl5iPSQVuBUD6Y8iFe0OE7fiDvbwASalAebz4I8DsU1FVTSBWkqOO1dRehuu0fmYmE6lXlO/6fLmWqaX536o9kIIeP+/+4RA+4NslHWFb4N8CwZoWye0/4ssatZUXDkmwdpZnmk3920CTPLQI43lGtgFLPksQgUVt3PfxRzw68gscFmbeJTDHfunw0Nl7boq4s12bntTa8l/abPGlR/mXijdOK7Y5qGykdjVuN0ZXgjDmZPrCIAZEWfFbAVxDS5uthdDyG9++TaYvB19HOXf3g0OP23T2EEv0Ss0RDl6jw7RF3SCJoglg+Rr8j35kQ7T43Scnm6upsnW8wL9VSn9DYeK1Bw=</latexit>

�@✓ log p(D|✓) = 0 if p✓(sv) = p(D)
<latexit sha1_base64="meobWHTboBDSnyHJqfy7E17g174=">AAACVnicbVFNaxsxENWu8+G6bbJNj72ImkJyqNkNgbSHQkh66DGBugl4zTIrz9oiWq2QZkPN4j9ZcslfySXV2iY0SQcET+/Nk0ZPuVHSURzfBWFnY3Nru/uq9/rN253d6N3eL1fVVuBQVKqyVzk4VFLjkCQpvDIWocwVXubXZ61+eYPWyUr/pLnBcQlTLQspgDyVRfpzasCSBJU1Kc2QYMFTVU252U9LoJkA1Xz3lD+D+KrhgH/jceo3+JsaWXiRm0fzypUXjVtkN23nk3MOsqgfD+Jl8ZcgWYM+W9d5Fv1JJ5WoS9QkFDg3SmJD46YdWShc9NLaoQFxDVMceaihRDdulrks+CfPTHhRWb808SX7r6OB0rl5mfvOdkb3XGvJ/2mjmoov40ZqUxNqsbqoqBWnirch84m0KEjNPQBhpZ+VixlYEOS/oudDSJ4/+SUYHg6+DpKLo/7J6TqNLvvAPrJ9lrBjdsJ+sHM2ZILdsvugE2wEd8FDuBlur1rDYO15z55UGP0FpZCz5A==</latexit><latexit sha1_base64="meobWHTboBDSnyHJqfy7E17g174=">AAACVnicbVFNaxsxENWu8+G6bbJNj72ImkJyqNkNgbSHQkh66DGBugl4zTIrz9oiWq2QZkPN4j9ZcslfySXV2iY0SQcET+/Nk0ZPuVHSURzfBWFnY3Nru/uq9/rN253d6N3eL1fVVuBQVKqyVzk4VFLjkCQpvDIWocwVXubXZ61+eYPWyUr/pLnBcQlTLQspgDyVRfpzasCSBJU1Kc2QYMFTVU252U9LoJkA1Xz3lD+D+KrhgH/jceo3+JsaWXiRm0fzypUXjVtkN23nk3MOsqgfD+Jl8ZcgWYM+W9d5Fv1JJ5WoS9QkFDg3SmJD46YdWShc9NLaoQFxDVMceaihRDdulrks+CfPTHhRWb808SX7r6OB0rl5mfvOdkb3XGvJ/2mjmoov40ZqUxNqsbqoqBWnirch84m0KEjNPQBhpZ+VixlYEOS/oudDSJ4/+SUYHg6+DpKLo/7J6TqNLvvAPrJ9lrBjdsJ+sHM2ZILdsvugE2wEd8FDuBlur1rDYO15z55UGP0FpZCz5A==</latexit><latexit sha1_base64="meobWHTboBDSnyHJqfy7E17g174=">AAACVnicbVFNaxsxENWu8+G6bbJNj72ImkJyqNkNgbSHQkh66DGBugl4zTIrz9oiWq2QZkPN4j9ZcslfySXV2iY0SQcET+/Nk0ZPuVHSURzfBWFnY3Nru/uq9/rN253d6N3eL1fVVuBQVKqyVzk4VFLjkCQpvDIWocwVXubXZ61+eYPWyUr/pLnBcQlTLQspgDyVRfpzasCSBJU1Kc2QYMFTVU252U9LoJkA1Xz3lD+D+KrhgH/jceo3+JsaWXiRm0fzypUXjVtkN23nk3MOsqgfD+Jl8ZcgWYM+W9d5Fv1JJ5WoS9QkFDg3SmJD46YdWShc9NLaoQFxDVMceaihRDdulrks+CfPTHhRWb808SX7r6OB0rl5mfvOdkb3XGvJ/2mjmoov40ZqUxNqsbqoqBWnirch84m0KEjNPQBhpZ+VixlYEOS/oudDSJ4/+SUYHg6+DpKLo/7J6TqNLvvAPrJ9lrBjdsJ+sHM2ZILdsvugE2wEd8FDuBlur1rDYO15z55UGP0FpZCz5A==</latexit><latexit sha1_base64="meobWHTboBDSnyHJqfy7E17g174=">AAACVnicbVFNaxsxENWu8+G6bbJNj72ImkJyqNkNgbSHQkh66DGBugl4zTIrz9oiWq2QZkPN4j9ZcslfySXV2iY0SQcET+/Nk0ZPuVHSURzfBWFnY3Nru/uq9/rN253d6N3eL1fVVuBQVKqyVzk4VFLjkCQpvDIWocwVXubXZ61+eYPWyUr/pLnBcQlTLQspgDyVRfpzasCSBJU1Kc2QYMFTVU252U9LoJkA1Xz3lD+D+KrhgH/jceo3+JsaWXiRm0fzypUXjVtkN23nk3MOsqgfD+Jl8ZcgWYM+W9d5Fv1JJ5WoS9QkFDg3SmJD46YdWShc9NLaoQFxDVMceaihRDdulrks+CfPTHhRWb808SX7r6OB0rl5mfvOdkb3XGvJ/2mjmoov40ZqUxNqsbqoqBWnirch84m0KEjNPQBhpZ+VixlYEOS/oudDSJ4/+SUYHg6+DpKLo/7J6TqNLvvAPrJ9lrBjdsJ+sHM2ZILdsvugE2wEd8FDuBlur1rDYO15z55UGP0FpZCz5A==</latexit>

The Challenges of Inference

• The partition function is intractable.

• Unconstrained dependency structure.

• Gradient of discrete variables is not defined.

• Boltzmann machines can be highly multimodal.

The Challenges of Inference

• The partition function is intractable.

• Unconstrained

• Gradient of discrete random variables is not defined.

• Boltzmann machines can be highly multimodal in the sample s.s
<latexit sha1_base64="0blIqn0fvwxN2BfTtbd6zvSa/88=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjxWMLbYlrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4LxTe63nrg2Ilb3OEl4L6JDJULBKFrpsRtRHAVhZqb9as2tuzOQZeIVpAYFmv3qV3cQszTiCpmkxnQ8N8FeRjUKJvm00k0NTygb0yHvWKpoxE0vmyWekhOrDEgYa/sUkpn6eyOjkTGTKLCTeUKz6OXif14nxfCylwmVpMgVm38UppJgTPLzyUBozlBOLKFMC5uVsBHVlKEtqWJL8BZPXib+Wf2q7t2d1xrXRRtlOIJjOAUPLqABt9AEHxgoeIZXeHOM8+K8Ox/z0ZJT7BzCHzifP2A8kOs=</latexit><latexit sha1_base64="0blIqn0fvwxN2BfTtbd6zvSa/88=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjxWMLbYlrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4LxTe63nrg2Ilb3OEl4L6JDJULBKFrpsRtRHAVhZqb9as2tuzOQZeIVpAYFmv3qV3cQszTiCpmkxnQ8N8FeRjUKJvm00k0NTygb0yHvWKpoxE0vmyWekhOrDEgYa/sUkpn6eyOjkTGTKLCTeUKz6OXif14nxfCylwmVpMgVm38UppJgTPLzyUBozlBOLKFMC5uVsBHVlKEtqWJL8BZPXib+Wf2q7t2d1xrXRRtlOIJjOAUPLqABt9AEHxgoeIZXeHOM8+K8Ox/z0ZJT7BzCHzifP2A8kOs=</latexit><latexit sha1_base64="0blIqn0fvwxN2BfTtbd6zvSa/88=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjxWMLbYlrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4LxTe63nrg2Ilb3OEl4L6JDJULBKFrpsRtRHAVhZqb9as2tuzOQZeIVpAYFmv3qV3cQszTiCpmkxnQ8N8FeRjUKJvm00k0NTygb0yHvWKpoxE0vmyWekhOrDEgYa/sUkpn6eyOjkTGTKLCTeUKz6OXif14nxfCylwmVpMgVm38UppJgTPLzyUBozlBOLKFMC5uVsBHVlKEtqWJL8BZPXib+Wf2q7t2d1xrXRRtlOIJjOAUPLqABt9AEHxgoeIZXeHOM8+K8Ox/z0ZJT7BzCHzifP2A8kOs=</latexit><latexit sha1_base64="0blIqn0fvwxN2BfTtbd6zvSa/88=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN6KXjxWMLbYlrLZbtqlm03YfRFK6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mDjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4LxTe63nrg2Ilb3OEl4L6JDJULBKFrpsRtRHAVhZqb9as2tuzOQZeIVpAYFmv3qV3cQszTiCpmkxnQ8N8FeRjUKJvm00k0NTygb0yHvWKpoxE0vmyWekhOrDEgYa/sUkpn6eyOjkTGTKLCTeUKz6OXif14nxfCylwmVpMgVm38UppJgTPLzyUBozlBOLKFMC5uVsBHVlKEtqWJL8BZPXib+Wf2q7t2d1xrXRRtlOIJjOAUPLqABt9AEHxgoeIZXeHOM8+K8Ox/z0ZJT7BzCHzifP2A8kOs=</latexit>

All bad news

Probabilistic Continuous
Relaxation

The Motivation

• Challenge 2 and 3

• Relaxing discrete variables to continuous ones in optimization

The Question

How to relax discrete random variables and
 preserve the distribution at the same time?

Probabilistic Relaxation
Carefully add relaxed variables to the discrete variables,

so we can recover the discrete variables exactly.

Strategy
Discrete distribution Add auxiliary variables

s

x

Marginalize

p(x)
Notice magic here.
This is “Gaussian
integral trick.”

Hamiltonian MC
(“DHMC”)

Tuesday, 18 June 13

Strategy
Discrete distribution Add auxiliary variables

s

x

Marginalize

p(x)
Notice magic here.
This is “Gaussian
integral trick.”

Hamiltonian MC
(“DHMC”)

Tuesday, 18 June 13

p(s|x)
<latexit sha1_base64="xlDUAOzF51AaCuBnMrEfygUpKlE=">AAACBnicbVDLSsNAFJ3UV62vqEtBBotQNyURQd0V3bisYGyhDWUynbRDJw9mbsQSsnPjr7hxoeLWb3Dn3zhpI2jrgYHDOecy9x4vFlyBZX0ZpYXFpeWV8mplbX1jc8vc3rlVUSIpc2gkItn2iGKCh8wBDoK1Y8lI4AnW8kaXud+6Y1LxKLyBcczcgAxC7nNKQEs9cz+udQMCQ89PVYa7Ogr4R7jPjnpm1apbE+B5Yhekigo0e+Zntx/RJGAhUEGU6thWDG5KJHAqWFbpJorFhI7IgHU0DUnAlJtO7sjwoVb62I+kfiHgifp7IiWBUuPA08l8RTXr5eJ/XicB/8xNeRgnwEI6/chPBIYI56XgPpeMghhrQqjkeldMh0QSCrq6ii7Bnj15njjH9fO6fX1SbVwUbZTRHjpANWSjU9RAV6iJHETRA3pCL+jVeDSejTfjfRotGcXMLvoD4+Mbc6WZQA==</latexit><latexit sha1_base64="xlDUAOzF51AaCuBnMrEfygUpKlE=">AAACBnicbVDLSsNAFJ3UV62vqEtBBotQNyURQd0V3bisYGyhDWUynbRDJw9mbsQSsnPjr7hxoeLWb3Dn3zhpI2jrgYHDOecy9x4vFlyBZX0ZpYXFpeWV8mplbX1jc8vc3rlVUSIpc2gkItn2iGKCh8wBDoK1Y8lI4AnW8kaXud+6Y1LxKLyBcczcgAxC7nNKQEs9cz+udQMCQ89PVYa7Ogr4R7jPjnpm1apbE+B5Yhekigo0e+Zntx/RJGAhUEGU6thWDG5KJHAqWFbpJorFhI7IgHU0DUnAlJtO7sjwoVb62I+kfiHgifp7IiWBUuPA08l8RTXr5eJ/XicB/8xNeRgnwEI6/chPBIYI56XgPpeMghhrQqjkeldMh0QSCrq6ii7Bnj15njjH9fO6fX1SbVwUbZTRHjpANWSjU9RAV6iJHETRA3pCL+jVeDSejTfjfRotGcXMLvoD4+Mbc6WZQA==</latexit><latexit sha1_base64="xlDUAOzF51AaCuBnMrEfygUpKlE=">AAACBnicbVDLSsNAFJ3UV62vqEtBBotQNyURQd0V3bisYGyhDWUynbRDJw9mbsQSsnPjr7hxoeLWb3Dn3zhpI2jrgYHDOecy9x4vFlyBZX0ZpYXFpeWV8mplbX1jc8vc3rlVUSIpc2gkItn2iGKCh8wBDoK1Y8lI4AnW8kaXud+6Y1LxKLyBcczcgAxC7nNKQEs9cz+udQMCQ89PVYa7Ogr4R7jPjnpm1apbE+B5Yhekigo0e+Zntx/RJGAhUEGU6thWDG5KJHAqWFbpJorFhI7IgHU0DUnAlJtO7sjwoVb62I+kfiHgifp7IiWBUuPA08l8RTXr5eJ/XicB/8xNeRgnwEI6/chPBIYI56XgPpeMghhrQqjkeldMh0QSCrq6ii7Bnj15njjH9fO6fX1SbVwUbZTRHjpANWSjU9RAV6iJHETRA3pCL+jVeDSejTfjfRotGcXMLvoD4+Mbc6WZQA==</latexit><latexit sha1_base64="xlDUAOzF51AaCuBnMrEfygUpKlE=">AAACBnicbVDLSsNAFJ3UV62vqEtBBotQNyURQd0V3bisYGyhDWUynbRDJw9mbsQSsnPjr7hxoeLWb3Dn3zhpI2jrgYHDOecy9x4vFlyBZX0ZpYXFpeWV8mplbX1jc8vc3rlVUSIpc2gkItn2iGKCh8wBDoK1Y8lI4AnW8kaXud+6Y1LxKLyBcczcgAxC7nNKQEs9cz+udQMCQ89PVYa7Ogr4R7jPjnpm1apbE+B5Yhekigo0e+Zntx/RJGAhUEGU6thWDG5KJHAqWFbpJorFhI7IgHU0DUnAlJtO7sjwoVb62I+kfiHgifp7IiWBUuPA08l8RTXr5eJ/XicB/8xNeRgnwEI6/chPBIYI56XgPpeMghhrQqjkeldMh0QSCrq6ii7Bnj15njjH9fO6fX1SbVwUbZTRHjpANWSjU9RAV6iJHETRA3pCL+jVeDSejTfjfRotGcXMLvoD4+Mbc6WZQA==</latexit>

Carefully add relaxed variables to the discrete variables,
so we can recover the discrete variables exactly.

Probabilistic Relaxation

Probabilistic Relaxation for Boltzmann Machines

systems. On synthetic problems and a real world problem in text processing, we show that HMC in
the continuous relaxation can be much more accurate than standard MCMC methods on the discrete
distribution.

The only previous work of which we are aware that uses the Gaussian integral trick for inference
in graphical models is Martens and Sutskever [12]. They use the trick to transform an arbitrary
MRF into an equivalent restricted Boltzmann machine (RBM), on which they then do block Gibbs
sampling. They show that this transformation is useful when each block Gibbs step can be performed
in parallel. However, unlike the current work, they do not sum out the discrete variables, so they do
not perform a full continuous relaxation.

2 Background

Consider an undirected graphical model over random vectors t = (t1, t2, . . . tM) where each
ti 2 {0, 1, 2, . . . Ki � 1}. We will employ a 1 of Ki representation for each non-binary ti and
concatenate the resulting binary variables into the vector s = (s1 . . . sN). We will also focus on
pairwise models over a graph G = (V, E) where V = {1, 2, . . . N}. Every discrete undirected
model can be converted into a pairwise model at the cost of expanding the state space. The undi-
rected pairwise graphical model can be written in the form

p(s) =
1

Z

Y

(i,j)2G

exp(�Eij(si, sj)) (1)

where Z is a normalisation term, and is a sum over all valid states of (s1, s2, . . . , sN) that comply
with the 1 of Ki constraints. Equivalently we can set Eij(si, sj) to be very large when si and sj

are derived from the same variable tk (for some k and i 6= j, and expanding G to include (i, j)),
making the resulting product for the terms that break the 1 of Ki constraints to be exponentially
small. Henceforth, without loss of generality, we can consider binary pairwise models, and assume
E captures any additional constraints that might apply. Then this model takes the general form of a
Boltzmann machine or binary MRF, and can be conveniently rewritten as

p(s) =
1

Z
exp

⇢
aT s +

1

2
sT

W s

�
(2)

where a 2 RN , and W , a real symmetric matrix, are the model parameters. The normalization
function is

Z =
X

s

exp

⇢
aT s +

1

2
sT

W s

�
. (3)

3 Gaussian Integral Trick

Inference in Boltzmann machines (which is equivalent to inference in Ising models) has always been
a challenging problem. Typically Markov chain Monte Carlo procedures such as Gibbs sampling
have been used, but the high levels of connectivity in Boltzmann machines can cause trouble and
result in slow mixing in many situations. Furthermore for frustrated systems, such models are highly
multimodal [1], often with large potential barriers between the different modes.

In many situations, the Hamiltonian Monte Carlo method has provided a more efficient sampling
method for highly coupled systems [17], but is only appropriate in real valued problems. For this
reason, we choose to work with a real valued augmentation of the Boltzmann machine using the
Gaussian integral trick. The main idea is to introduce a real valued auxiliary vector x 2 RN in such
a way that the sT

W s term from (2) cancels out [8]. We generalise the standard form of the Gaussian
integral trick by using the following form for the conditional distribution of the auxiliary variable x:

p(x|s) = N (x; A(W + D)s, A(W + D)AT) (4)
for any choice of invertible matrix A and any diagonal matrix D for which W + D is positive
definite. N (x;m, ⌃) denotes the Gaussian distribution in x with mean m and covariance ⌃. The
resulting joint distribution over x and s is

p(x, s) / exp(�1

2
(x�A(W +D)s)T (A�1)T (W +D)�1

A
�1(x�A(W +D)s)+

1

2
sT

W s+aT s).

(5)

2

systems. On synthetic problems and a real world problem in text processing, we show that HMC in
the continuous relaxation can be much more accurate than standard MCMC methods on the discrete
distribution.

The only previous work of which we are aware that uses the Gaussian integral trick for inference
in graphical models is Martens and Sutskever [12]. They use the trick to transform an arbitrary
MRF into an equivalent restricted Boltzmann machine (RBM), on which they then do block Gibbs
sampling. They show that this transformation is useful when each block Gibbs step can be performed
in parallel. However, unlike the current work, they do not sum out the discrete variables, so they do
not perform a full continuous relaxation.

2 Background

Consider an undirected graphical model over random vectors t = (t1, t2, . . . tM) where each
ti 2 {0, 1, 2, . . . Ki � 1}. We will employ a 1 of Ki representation for each non-binary ti and
concatenate the resulting binary variables into the vector s = (s1 . . . sN). We will also focus on
pairwise models over a graph G = (V, E) where V = {1, 2, . . . N}. Every discrete undirected
model can be converted into a pairwise model at the cost of expanding the state space. The undi-
rected pairwise graphical model can be written in the form

p(s) =
1

Z

Y

(i,j)2G

exp(�Eij(si, sj)) (1)

where Z is a normalisation term, and is a sum over all valid states of (s1, s2, . . . , sN) that comply
with the 1 of Ki constraints. Equivalently we can set Eij(si, sj) to be very large when si and sj

are derived from the same variable tk (for some k and i 6= j, and expanding G to include (i, j)),
making the resulting product for the terms that break the 1 of Ki constraints to be exponentially
small. Henceforth, without loss of generality, we can consider binary pairwise models, and assume
E captures any additional constraints that might apply. Then this model takes the general form of a
Boltzmann machine or binary MRF, and can be conveniently rewritten as

p(s) =
1

Z
exp

⇢
aT s +

1

2
sT

W s

�
(2)

where a 2 RN , and W , a real symmetric matrix, are the model parameters. The normalization
function is

Z =
X

s

exp

⇢
aT s +

1

2
sT

W s

�
. (3)

3 Gaussian Integral Trick

Inference in Boltzmann machines (which is equivalent to inference in Ising models) has always been
a challenging problem. Typically Markov chain Monte Carlo procedures such as Gibbs sampling
have been used, but the high levels of connectivity in Boltzmann machines can cause trouble and
result in slow mixing in many situations. Furthermore for frustrated systems, such models are highly
multimodal [1], often with large potential barriers between the different modes.

In many situations, the Hamiltonian Monte Carlo method has provided a more efficient sampling
method for highly coupled systems [17], but is only appropriate in real valued problems. For this
reason, we choose to work with a real valued augmentation of the Boltzmann machine using the
Gaussian integral trick. The main idea is to introduce a real valued auxiliary vector x 2 RN in such
a way that the sT

W s term from (2) cancels out [8]. We generalise the standard form of the Gaussian
integral trick by using the following form for the conditional distribution of the auxiliary variable x:

p(x|s) = N (x; A(W + D)s, A(W + D)AT) (4)
for any choice of invertible matrix A and any diagonal matrix D for which W + D is positive
definite. N (x;m, ⌃) denotes the Gaussian distribution in x with mean m and covariance ⌃. The
resulting joint distribution over x and s is

p(x, s) / exp(�1

2
(x�A(W +D)s)T (A�1)T (W +D)�1

A
�1(x�A(W +D)s)+

1

2
sT

W s+aT s).

(5)

2

If d denotes a vector containing the diagonal elements of D, this simplifies to

p(x, s) / exp

✓
�1

2
xT (A�1)T (W + D)�1

A
�1x + sT

A
�1x + (a � 1

2
d)T s

◆
. (6)

The key point is that the sT
W s term has vanished. We can then marginalise out the s variables, as

they are decoupled from one another in the energy function, and can be summed over independently.
Define the vector ↵x = A

�1x. Then the marginal density is

p(x) / exp

⇢
�1

2
xT

A
�1(W + D)�1(A�1)T x

�Y

i

✓
1 + exp

⇢
↵x;i + ai �

di

2

�◆
. (7)

The constant of proportionality in the above equation is Z
�1|2⇡A(W + D)AT |�1/2. The distribu-

tion p(x) is a mixture of 2N Gaussians, i.e., the Gaussians are p(x|s) with mixing proportion p(s)
for each possible assignment s.

We have now converted the discrete distribution p(s) into a corresponding continuous distribution
p(x). To understand the sense in which the two distributions “correspond”, consider reconstructing
s using the conditional distribution p(s|x). First, all of the si are independent given x, because s
appears only log-linearly in (6). Using the sigmoid �(z) = (1 + exp{�z})�1, this is

p(si|x) = �

✓
�↵x;i � ai +

di

2

◆1�si

�

✓
↵x;i + ai �

di

2

◆si

(8)

Two choices for A are of particular interest because they introduce additional independence rela-
tionships into the augmented model. First, if A = ⇤� 1

2 V
T for the eigendecomposition W + D =

V ⇤V
T , then the result is an undirected bipartite graphical model in the joint space of (x, s):

p(x, s) / exp

✓
�1

2
xT x + sT

V ⇤
1
2 x + (a � 1

2
d)T s

◆
. (9)

This is a Gaussian-Bernoulli form of exponential family harmonium [25]. Hence we see that the
Gaussian-Bernoulli harmonium is equivalent to a general Boltzmann machine over the discrete vari-
ables only. Second, if A = I we get

p(x, s) = Z
�1|2⇡(W + D)|�1/2 exp

(✓
a + x � 1

2
d

◆T

s � 1

2
xT (W + D)�1x

)
, (10)

which is of particular interest in that the coupling between s and x is one-to-one. A given xi

determines the Bernoulli probabilities for the variable si, independent of the states of any of the
other variables. This yields a marginal density

p(x) = Z
�1|2⇡(W + D)|�1/2 exp

⇢
�1

2
xT (W + D)�1x

�Y

i

✓
1 + exp

⇢
ai + xi �

di

2

�◆

(11)
and a particularly nice set of Bernoulli conditional probabilities

p(si|x) = �

✓
�ai � xi +

di

2

◆1�si

�

✓
ai + xi �

di

2

◆si

(12)

In this model, the marginal of p(x) is a mixture of Gaussian distributions. Then, conditioned on x,
the log odds of si = 1 is a recentered version of xi, in particular, xi � ai � di/2.

The different versions of the Gaussian integral trick can be compactly summarized by the indepen-
dence relations that they introduce. All versions of Gaussian integral trick give us that all si and
sj are independent given x. If we take A = ⇤�1/2

V
T , we additionally get that all xi and xj are

independent given s. Finally if we instead take A = I , we get that si and sj are independent given
only xi and xj . These independence relations are presented graphically in Figure 1.

3

If d denotes a vector containing the diagonal elements of D, this simplifies to

p(x, s) / exp

✓
�1

2
xT (A�1)T (W + D)�1

A
�1x + sT

A
�1x + (a � 1

2
d)T s

◆
. (6)

The key point is that the sT
W s term has vanished. We can then marginalise out the s variables, as

they are decoupled from one another in the energy function, and can be summed over independently.
Define the vector ↵x = A

�1x. Then the marginal density is

p(x) / exp

⇢
�1

2
xT

A
�1(W + D)�1(A�1)T x

�Y

i

✓
1 + exp

⇢
↵x;i + ai �

di

2

�◆
. (7)

The constant of proportionality in the above equation is Z
�1|2⇡A(W + D)AT |�1/2. The distribu-

tion p(x) is a mixture of 2N Gaussians, i.e., the Gaussians are p(x|s) with mixing proportion p(s)
for each possible assignment s.

We have now converted the discrete distribution p(s) into a corresponding continuous distribution
p(x). To understand the sense in which the two distributions “correspond”, consider reconstructing
s using the conditional distribution p(s|x). First, all of the si are independent given x, because s
appears only log-linearly in (6). Using the sigmoid �(z) = (1 + exp{�z})�1, this is

p(si|x) = �

✓
�↵x;i � ai +

di

2

◆1�si

�

✓
↵x;i + ai �

di

2

◆si

(8)

Two choices for A are of particular interest because they introduce additional independence rela-
tionships into the augmented model. First, if A = ⇤� 1

2 V
T for the eigendecomposition W + D =

V ⇤V
T , then the result is an undirected bipartite graphical model in the joint space of (x, s):

p(x, s) / exp

✓
�1

2
xT x + sT

V ⇤
1
2 x + (a � 1

2
d)T s

◆
. (9)

This is a Gaussian-Bernoulli form of exponential family harmonium [25]. Hence we see that the
Gaussian-Bernoulli harmonium is equivalent to a general Boltzmann machine over the discrete vari-
ables only. Second, if A = I we get

p(x, s) = Z
�1|2⇡(W + D)|�1/2 exp

(✓
a + x � 1

2
d

◆T

s � 1

2
xT (W + D)�1x

)
, (10)

which is of particular interest in that the coupling between s and x is one-to-one. A given xi

determines the Bernoulli probabilities for the variable si, independent of the states of any of the
other variables. This yields a marginal density

p(x) = Z
�1|2⇡(W + D)|�1/2 exp

⇢
�1

2
xT (W + D)�1x

�Y

i

✓
1 + exp

⇢
ai + xi �

di

2

�◆

(11)
and a particularly nice set of Bernoulli conditional probabilities

p(si|x) = �

✓
�ai � xi +

di

2

◆1�si

�

✓
ai + xi �

di

2

◆si

(12)

In this model, the marginal of p(x) is a mixture of Gaussian distributions. Then, conditioned on x,
the log odds of si = 1 is a recentered version of xi, in particular, xi � ai � di/2.

The different versions of the Gaussian integral trick can be compactly summarized by the indepen-
dence relations that they introduce. All versions of Gaussian integral trick give us that all si and
sj are independent given x. If we take A = ⇤�1/2

V
T , we additionally get that all xi and xj are

independent given s. Finally if we instead take A = I , we get that si and sj are independent given
only xi and xj . These independence relations are presented graphically in Figure 1.

3

Binary variables are Independent given relaxation Each configuration defines the mean of correlated Gaussian

An Interpretation of the Relaxation of Boltzmann
machines

If d denotes a vector containing the diagonal elements of D, this simplifies to

p(x, s) / exp

✓
�1

2
xT (A�1)T (W + D)�1

A
�1x + sT

A
�1x + (a � 1

2
d)T s

◆
. (6)

The key point is that the sT
W s term has vanished. We can then marginalise out the s variables, as

they are decoupled from one another in the energy function, and can be summed over independently.
Define the vector ↵x = A

�1x. Then the marginal density is

p(x) / exp

⇢
�1

2
xT

A
�1(W + D)�1(A�1)T x

�Y

i

✓
1 + exp

⇢
↵x;i + ai �

di

2

�◆
. (7)

The constant of proportionality in the above equation is Z
�1|2⇡A(W + D)AT |�1/2. The distribu-

tion p(x) is a mixture of 2N Gaussians, i.e., the Gaussians are p(x|s) with mixing proportion p(s)
for each possible assignment s.

We have now converted the discrete distribution p(s) into a corresponding continuous distribution
p(x). To understand the sense in which the two distributions “correspond”, consider reconstructing
s using the conditional distribution p(s|x). First, all of the si are independent given x, because s
appears only log-linearly in (6). Using the sigmoid �(z) = (1 + exp{�z})�1, this is

p(si|x) = �

✓
�↵x;i � ai +

di

2

◆1�si

�

✓
↵x;i + ai �

di

2

◆si

(8)

Two choices for A are of particular interest because they introduce additional independence rela-
tionships into the augmented model. First, if A = ⇤� 1

2 V
T for the eigendecomposition W + D =

V ⇤V
T , then the result is an undirected bipartite graphical model in the joint space of (x, s):

p(x, s) / exp

✓
�1

2
xT x + sT

V ⇤
1
2 x + (a � 1

2
d)T s

◆
. (9)

This is a Gaussian-Bernoulli form of exponential family harmonium [25]. Hence we see that the
Gaussian-Bernoulli harmonium is equivalent to a general Boltzmann machine over the discrete vari-
ables only. Second, if A = I we get

p(x, s) = Z
�1|2⇡(W + D)|�1/2 exp

(✓
a + x � 1

2
d

◆T

s � 1

2
xT (W + D)�1x

)
, (10)

which is of particular interest in that the coupling between s and x is one-to-one. A given xi

determines the Bernoulli probabilities for the variable si, independent of the states of any of the
other variables. This yields a marginal density

p(x) = Z
�1|2⇡(W + D)|�1/2 exp

⇢
�1

2
xT (W + D)�1x

�Y

i

✓
1 + exp

⇢
ai + xi �

di

2

�◆

(11)
and a particularly nice set of Bernoulli conditional probabilities

p(si|x) = �

✓
�ai � xi +

di

2

◆1�si

�

✓
ai + xi �

di

2

◆si

(12)

In this model, the marginal of p(x) is a mixture of Gaussian distributions. Then, conditioned on x,
the log odds of si = 1 is a recentered version of xi, in particular, xi � ai � di/2.

The different versions of the Gaussian integral trick can be compactly summarized by the indepen-
dence relations that they introduce. All versions of Gaussian integral trick give us that all si and
sj are independent given x. If we take A = ⇤�1/2

V
T , we additionally get that all xi and xj are

independent given s. Finally if we instead take A = I , we get that si and sj are independent given
only xi and xj . These independence relations are presented graphically in Figure 1.

3

An Interpretation of the Relaxation of Boltzmann
machines

If d denotes a vector containing the diagonal elements of D, this simplifies to

p(x, s) / exp

✓
�1

2
xT (A�1)T (W + D)�1

A
�1x + sT

A
�1x + (a � 1

2
d)T s

◆
. (6)

The key point is that the sT
W s term has vanished. We can then marginalise out the s variables, as

they are decoupled from one another in the energy function, and can be summed over independently.
Define the vector ↵x = A

�1x. Then the marginal density is

p(x) / exp

⇢
�1

2
xT

A
�1(W + D)�1(A�1)T x

�Y

i

✓
1 + exp

⇢
↵x;i + ai �

di

2

�◆
. (7)

The constant of proportionality in the above equation is Z
�1|2⇡A(W + D)AT |�1/2. The distribu-

tion p(x) is a mixture of 2N Gaussians, i.e., the Gaussians are p(x|s) with mixing proportion p(s)
for each possible assignment s.

We have now converted the discrete distribution p(s) into a corresponding continuous distribution
p(x). To understand the sense in which the two distributions “correspond”, consider reconstructing
s using the conditional distribution p(s|x). First, all of the si are independent given x, because s
appears only log-linearly in (6). Using the sigmoid �(z) = (1 + exp{�z})�1, this is

p(si|x) = �

✓
�↵x;i � ai +

di

2

◆1�si

�

✓
↵x;i + ai �

di

2

◆si

(8)

Two choices for A are of particular interest because they introduce additional independence rela-
tionships into the augmented model. First, if A = ⇤� 1

2 V
T for the eigendecomposition W + D =

V ⇤V
T , then the result is an undirected bipartite graphical model in the joint space of (x, s):

p(x, s) / exp

✓
�1

2
xT x + sT

V ⇤
1
2 x + (a � 1

2
d)T s

◆
. (9)

This is a Gaussian-Bernoulli form of exponential family harmonium [25]. Hence we see that the
Gaussian-Bernoulli harmonium is equivalent to a general Boltzmann machine over the discrete vari-
ables only. Second, if A = I we get

p(x, s) = Z
�1|2⇡(W + D)|�1/2 exp

(✓
a + x � 1

2
d

◆T

s � 1

2
xT (W + D)�1x

)
, (10)

which is of particular interest in that the coupling between s and x is one-to-one. A given xi

determines the Bernoulli probabilities for the variable si, independent of the states of any of the
other variables. This yields a marginal density

p(x) = Z
�1|2⇡(W + D)|�1/2 exp

⇢
�1

2
xT (W + D)�1x

�Y

i

✓
1 + exp

⇢
ai + xi �

di

2

�◆

(11)
and a particularly nice set of Bernoulli conditional probabilities

p(si|x) = �

✓
�ai � xi +

di

2

◆1�si

�

✓
ai + xi �

di

2

◆si

(12)

In this model, the marginal of p(x) is a mixture of Gaussian distributions. Then, conditioned on x,
the log odds of si = 1 is a recentered version of xi, in particular, xi � ai � di/2.

The different versions of the Gaussian integral trick can be compactly summarized by the indepen-
dence relations that they introduce. All versions of Gaussian integral trick give us that all si and
sj are independent given x. If we take A = ⇤�1/2

V
T , we additionally get that all xi and xj are

independent given s. Finally if we instead take A = I , we get that si and sj are independent given
only xi and xj . These independence relations are presented graphically in Figure 1.

3

Gaussian
density function

Log Concave

An Interpretation of the Relaxation of Boltzmann
machines

If d denotes a vector containing the diagonal elements of D, this simplifies to

p(x, s) / exp

✓
�1

2
xT (A�1)T (W + D)�1

A
�1x + sT

A
�1x + (a � 1

2
d)T s

◆
. (6)

The key point is that the sT
W s term has vanished. We can then marginalise out the s variables, as

they are decoupled from one another in the energy function, and can be summed over independently.
Define the vector ↵x = A

�1x. Then the marginal density is

p(x) / exp

⇢
�1

2
xT

A
�1(W + D)�1(A�1)T x

�Y

i

✓
1 + exp

⇢
↵x;i + ai �

di

2

�◆
. (7)

The constant of proportionality in the above equation is Z
�1|2⇡A(W + D)AT |�1/2. The distribu-

tion p(x) is a mixture of 2N Gaussians, i.e., the Gaussians are p(x|s) with mixing proportion p(s)
for each possible assignment s.

We have now converted the discrete distribution p(s) into a corresponding continuous distribution
p(x). To understand the sense in which the two distributions “correspond”, consider reconstructing
s using the conditional distribution p(s|x). First, all of the si are independent given x, because s
appears only log-linearly in (6). Using the sigmoid �(z) = (1 + exp{�z})�1, this is

p(si|x) = �

✓
�↵x;i � ai +

di

2

◆1�si

�

✓
↵x;i + ai �

di

2

◆si

(8)

Two choices for A are of particular interest because they introduce additional independence rela-
tionships into the augmented model. First, if A = ⇤� 1

2 V
T for the eigendecomposition W + D =

V ⇤V
T , then the result is an undirected bipartite graphical model in the joint space of (x, s):

p(x, s) / exp

✓
�1

2
xT x + sT

V ⇤
1
2 x + (a � 1

2
d)T s

◆
. (9)

This is a Gaussian-Bernoulli form of exponential family harmonium [25]. Hence we see that the
Gaussian-Bernoulli harmonium is equivalent to a general Boltzmann machine over the discrete vari-
ables only. Second, if A = I we get

p(x, s) = Z
�1|2⇡(W + D)|�1/2 exp

(✓
a + x � 1

2
d

◆T

s � 1

2
xT (W + D)�1x

)
, (10)

which is of particular interest in that the coupling between s and x is one-to-one. A given xi

determines the Bernoulli probabilities for the variable si, independent of the states of any of the
other variables. This yields a marginal density

p(x) = Z
�1|2⇡(W + D)|�1/2 exp

⇢
�1

2
xT (W + D)�1x

�Y

i

✓
1 + exp

⇢
ai + xi �

di

2

�◆

(11)
and a particularly nice set of Bernoulli conditional probabilities

p(si|x) = �

✓
�ai � xi +

di

2

◆1�si

�

✓
ai + xi �

di

2

◆si

(12)

In this model, the marginal of p(x) is a mixture of Gaussian distributions. Then, conditioned on x,
the log odds of si = 1 is a recentered version of xi, in particular, xi � ai � di/2.

The different versions of the Gaussian integral trick can be compactly summarized by the indepen-
dence relations that they introduce. All versions of Gaussian integral trick give us that all si and
sj are independent given x. If we take A = ⇤�1/2

V
T , we additionally get that all xi and xj are

independent given s. Finally if we instead take A = I , we get that si and sj are independent given
only xi and xj . These independence relations are presented graphically in Figure 1.

3

Gaussian
density function

Normalization of logistic
parameterised Bernoulli

Log Concave Log Convex

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

• A MCMC sampler for continuous distributions

• Require derivative of gradients for simulating the dynamics

• Explore sample space by Hamiltonian dynamics rather than random walk

• Tolerant to strong correlation structure

• Outperform many other MCMC methods in high dimensional space

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

5 10 15 20 25 30
0

50

100

150

200

250

300

time
e

n
e

rg
y

potential
Kinetic
Hamlt

x
1

v

5 10 15 20 25 30
−300

−200

−100

0

100

200

300

time

e
n
e
rg

y

potential
Kinetic
Hamlt

x
1

v

HMC with diagonal constant mass SSHMC (semi-separable mass)
Figure 1: The trace of energy over the simulation time and the trajectory of the first dimension
of 100 dimensional Gaussian x1 (vertical axis) and hyperparameter v (horizontal axis). The two
simulations start with the same initial point sampled from the Gaussian Funnel.

time(s) min ESS(x, v) min ESS/s (x, v) MSE(E[v], E[v2])
HMC 5.16 (302.97, 26.30) (58.64, 5.09) (2.28, 1.34)
RMHMC(Gibbs) 2.7 (2490.98, 8.93) (895.15, 3.21) (1.95, 1.33)
SSHMC 37.35 (3868.79, 1541.67) (103.57, 41.27) (0.04, 0.02)

Table 1: The result of ESS of 5000 samples on 100 + 1 dimensional Gaussian Funnel distribution.
x are model parameters and v is the hyperparameter. The last column is the mean squared error of
the sample estimated mean and variance of hyperparameter.

running time(s) ESS ✓ (min, med, max) ESS v min ESS/s
HMC 378 (2.05, 3.68, 4.79) ⇥103 815 2.15
RMHMC(Gibbs) 411 (0.8, 4.08, 4.99)⇥103 271 0.6
SSHMC 385.82 (2.5, 3.42, 4.27)⇥103 2266 5.83

Table 2: The results of ESS of 5000 samples after 1000 burn-in on Hierarchical Bayesian Logistic
Regression. ✓ are 200 dimensional model parameters and v is the hyperparameter.

time (s) ESS x(min, med, max) ESS(�, �, �) min ESS/s
HMC 162 (1.6, 2.2, 5.2)⇥102 (50, 50, 128) 0.31
RMHMC(Gibbs) 183 (12.1, 18.4, 33.5)⇥102 (385, 163, 411) 0.89
SSHMC 883 (78.4, 98.9, 120.7)⇥102 (4434, 1706, 1390) 1.57

Table 3: The ESS of 20000 posterior samples of Stochastic Volatility after 10000 burn-in. x are
latent volatilities over 2000 time lags and (�, �, �) are hyperparameters. Min ESS/s is the lowest
ESS over all parameters normalized by running time.

that the acceptance rate is around 70-85%. The number of leapfrog steps are tuned for each method
using preliminary runs. The implementation of RMHMC we used is from [7]. The running time is
wall-clock time measured after burn-in. The performance is evaluated by the minimum Effective
Sample Size (ESS) over all dimensions (see [6]). When considering the different computational
complexity of methods, our main efficiency metric is time normalized ESS.

5.1 Demonstration on Gaussian Funnel

We demonstrate SSHMC by sampling the Gaussian Funnel (GF) defined in Section 2. We con-
sider n = 100 dimensional low-level parameters x and 1 hyperparameter v. RMHMC within
Gibbs on GF has block diagonal mass matrix defined as Gx = �@

2
v log p(x, v)�1 = e

vI and
Gv = �Ex[@2

v log p(x, v)]�1 = (n + 1
9)�1. We use the same mass matrix in SSHMC, because

it is semi-separable. We use 2 leapfrog steps for low-level parameters and 1 leapfrog step for the
hyperparameter in ABLA and the same leapfrog step size for the two separable Hamiltonians.
We generate 5000 samples from each method after 1000 burn-in iterations. The ESS per second
(ESS/s) and mean squared error (MSE) of the sample estimated mean and variance of the hyperpa-
rameter are given in Table 1. Notice that RMHMC is much more efficient for the low-level variable
because of the adaptive mass matrix with hyperparameter. Figure 1 illustrates a dramatic difference
between HMC and SSHMC. It is clear that HMC suffers from oscillation of the hyperparameter in
a narrow region. That is because the kinetic energy limits the change of hyperparameters [3, 11].
In contrast, SSHMC has much wider energy variation and the trajectory spans a larger range of hy-

6

HMC for PR Boltzmann Machines

• The gradient of probabilistic relaxation of Boltzmann machines is easy to
compute.

• HMC is available for Boltzmann machines now!

• Straightforward to adapt HMC with the structure of Boltzmann machines.

• But, the multimodality of relaxed Boltzmann machines makes HMC
performs poorly in general.

Geometry

• Geometric perspective has been explored in slice sampling.

• Information geometry studies the space of probability distribution families.

• Recent advance in Manifold HMC reveals promising applications of
Information geometry for Bayesian inference.

• Geometry is also crucial in sampling PR Boltzmann machines

Beyond Deep Boltzmann
Machines

• The computation complexity of learning on general architecture

• Generalize learning algorithm for other undirected graphical models

• Continual learning with general Boltzmann machines

• Next inference challenge: Bayesian General Boltzmann machines!

In a world not just deep

Charles Sutton

Zoubin Ghahramani

Amos Storkey

Thank you
and

Questions!

